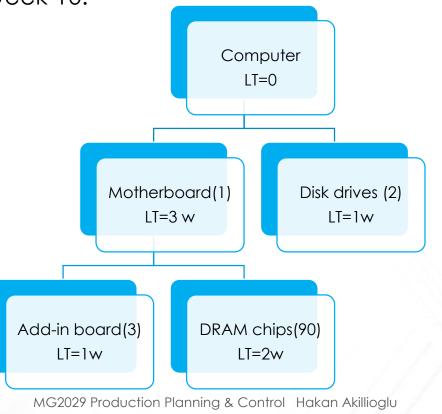
Exercise-2 !

Hakan Akillioglu


Email: haaki@kth.se Phone: 08 790 63 85

Office: Brinellvägen 66 K331

Suppose that the forecasted demands for the computer for weeks 6 to 11 are 220,165,180,120,75,300. The starting inventory of assembled computers in week 6 will be 75, and the production manager anticipates returns of 30 in week 8 and 10 in week 10.

• Determine the MPS for computers

Item:Computer	S											
Lead t=0wk	WEEKS	1	2	3	4	5	6	7	8	9	10	11
L4L	3											
Gross requirement							220	165	180	120	75	300
Scheduled receipts									30		10	
On hand inventory						75						
Net predicted demc	ind						145	165	150	120	65	300
Planned order receip	ots						145	165	150	120	65	300
Planned order releas	ses						145	165	150	120	65	300

MG2029 Production Planning & Control Hakan Akillioglu

• Execute the MRP calculations for motherboards assuming a lot-for-lot scheduling rule

Item:Motherboard	S											
Lead t=3wk	WEEKS	1	2	3	4	5	6	7	8	9	10	11
L4L	3											
Gross requirement							145	165	150	120	65	300
Scheduled receipts							0	0	0	0	0	0
On hand inventory							0	0	0	0	0	0
Net predicted dema	nd						145	165	150	120	65	300
Planned order receip	ots						145	165	150	120	65	300
Planned order releas	es			145	165	150	120	65	300			
Ending inventory							0	0	0	0	0	0

MG2029 Production Planning & Control Hakan Akillioglu

• Execute the MRP calculations for add-in boards assuming a lot size of 300.

Item:Add-in board	S											
Lead t=1wk	WEEKS	1	2	3	4	5	6	7	8	9	10	11
Q=300	3											
Gross requirement				435	495	450	360	195	900			
Scheduled receipts				0	0	0	0	0	0			
On hand inventory				0	0	0	0	0	0			
Net predicted demo	Ind			435	495	450	360	195	900			
Planned order receip	ots			600	600	300	300	300	900			
Planned order releas	ses		600	600	300	300	300	900				
Ending inventory				165	270	120	60	165	165			

MG2029 Production Planning & Control Hakan Akillioglu

- Execute the MRP for the motherboards assuming that one uses the EOQ formula to schedule production. K=\$180 and h=0.40.
 - $\lambda = (145 + 165 + 150 + 120 + 65 + 300)/6 = 157.5$
 - EOQ = 377

Item:Motherboard	S											
Lead t=3wk	WEEKS	1	2	3	4	5	6	7	8	9	10	11
EOQ	3											
Gross requirement							145	165	150	120	65	300
Scheduled receipts							0	0	0	0	0	0
On hand inventory							0	0	0	0	0	0
Net predicted dema	Ind						145	165	150	120	65	300
Planned order receip	ots						377		377			377
Planned order releas	ses			377		377			377			
Ending inventory							232	67	294	174	109	186

MG2029 Production Planning & Control Hakan Akillioglu

- Find the order quantities of add-in boards using silvermeal heuristic. Assume K=\$180 and h=0.30.
- For the add-in boards net predicted demand matrix is,
- r=(435, 495, 450, 360, 195, 900)
- C(1) = 180 C(2) = (180 + 0.3*495) / 2 = 164 (<180)C(3) = (180 + 0.3*495 + 2*0.3*450) / 3 = 199 (>164)**STOP**

Order1=435+495=930

•
$$C(1) = 180$$

 $C(2) = (180 + 0.3*360) / 2 = 144 (<180)$
 $C(3) = (180 + 0.3*360 + 2*0.3*195)/3 = 135 (<144)$
 $C(4) = (180 + 0.3*360 + 2*0.3*195+3*0.3*900)/4 = 304 (>135)$ **STOP**

Order2=450+360+195=1005

Order3=900

• Find the order quantities of add-in boards using silvermeal heuristic. Assume K=\$180 and h=0.30.

Item:Add-in board	S											
Lead t=1wk	WEEKS	1	2	3	4	5	6	7	8	9	10	11
Silver-meal heur.	3											
Gross requirement				435	495	450	360	195	900			
Scheduled receipts				0	0	0	0	0	0			
On hand inventory				0	0	0	0	0	0			
Net predicted dema	nd			435	495	450	360	195	900			
Planned order receip	ots			930		1005			900			
Planned order releas	es		930		1005			900				
Ending inventory				495	0	555	195	0	0			

MG2029 Production Planning & Control Hakan Akillioglu

• Seven jobs are to be processed through a single machine.

Job	1	2	3	4	5	6	7
Processing time	3	6	8	4	2	1	7
Due date	4	8	12	15	11	25	21

- Determine the sequence of the jobs in order to minimize
 - Mean flow time
 - Number of tardy jobs
 - Maximum lateness
- What is the makespan for any sequence?

MG2029 Production Planning & Control Hakan Akillioglu

A-SPT minimizes mean flow time!

• Sequence is 6-5-1-4-2-7-3.

B-Moore's Alg. Minimizes number of tardy jobs.

-First order by EDD which is 1-2-5-3-4-7-6.

-Then find the first tardy job.

Job	Processing time	Due date	Completion time
1	3	4	3
2	6	8	9

Eliminate the job with the longest processing time among the jobs before the first tardy job.

-Place job 2 at the end of the current sequence.

MG2029 Production Planning & Control Hakan Akillioglu

Job	Processing time	Due date	Completion time
1	3	4	3
5	2	11	5
3	8	12	13

• Place job 3 at the end of the current sequence.

Job	Processing time	Due date	Completion time
1	3	4	3
5	2	11	5
4	4	15	9
7	7	21	16
6	1	25	17

No tardy job left. The optimal sequence is 1-5-4-7-6-2-3 (or 1-5-4-7-6-3-2). Jobs 2 and 3 are tardy.

MG2029 Production Planning & Control Hakan Akillioglu

- EDD minimizes maximum lateness
 - The maximum lateness is minimized by EDD which is 1-2-5-3-4-7-6.
- What is the makespan for any sequence?
 - Makespan is the sum of the processing times for a single machine scheduling problem which is 31 for this problem.

• The following four jobs must be processed through a threemachine flow shop.

	MACHINE						
Job	Α	В	С				
1	4	2	6				
2	2	3	7				
3	6	5	6				
4	3	4	8				

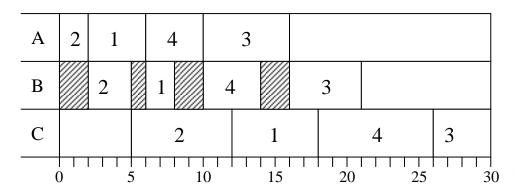
 Find the optimal sequencing of the jobs in order to minimize the makespan. What is the makespan in the optimal solution? Draw a gant chart.

• Check if the Johnson's rule condition for three machine is satisfied.

Condition is; $minA_i \ge max B_i$ or $minC_i \ge maxB_i$

 $min A_i = 2$ $max B_i = 5$ $min C_i = 6$

minC_i ≥ maxB_i is satisfied. We can apply johnson's rule.


	MACHINE						
Job	Α'	Β'					
1	6	8					
2	5	10					
3	11	11					
4	7	12					

• The optimal sequence is.

2]	4	3
---	---	---	---

MG2029 Production Planning & Control Hakan Akillioglu

• The optimal sequence is 2-1-4-3. The Gantt chart showing the optimal schedule is:

• From the chart, we see that the flow times for jobs are respectively 12, 18, 26, and 32. The mean flow time is 22.

A purchasing agent for a particular type of silicon wafer used in the production of semiconductors must decide among three sources. Source A will sell the silicon wafers for \$2.5 per wafer, independently of the number of wafers ordered. Source B will sell the wafers for \$2.4 each but will not consider an order for fewer than 3000 wafers. Source C will sell the wafers for \$2.3 each but will not accept an order fewer than 4000 wafers. Assume an order setup cost of \$100 and an annual requirement of 20 000 wafers. Assume a 20% annual interest rate for holding cost.

- 1. Which source should be used, and what is the size of the standing order?
- 2. What is the optimal value of the holding and setup costs for wafers when the optimal sources is used?
- 3. If the replenishment lead time for wafers is 3 months, determine the reorder point based on the on-hand level of inventory wafers.

• Typical all units discount case

$$\begin{array}{ll} \lambda &=& 20,000 \\ K &=& 100 \\ i &=& .20 \\ c_0 &=& \$2.50 \quad q_0 = 0 \\ c_1 &=& \$2.40 \quad q_1 = 3000 \\ c_2 &=& \$2.30 \quad q_2 = 4000 \end{array}$$

$$Q = \sqrt{\frac{2K\lambda}{Ic}}$$

- Q₀=2828
- Q₁=2887
- Q₂=2949

Only Q_0 is realizable.

MG2029 Production Planning & Control Hakan Akillioglu

 $\frac{\text{Cost at Q} = 4,000}{2} = 20000 * 2.3 + \frac{0.2 * 2.3 * 4000}{2} + \frac{100 * 20000}{4000} = \$47,420$

Cost at Q = 3,000

 $20000 * 2.4 + \frac{0.2 * 2.4 * 3000}{2} + \frac{100 * 20000}{3000} = \$49,386.67$

 $Cost at Q = Q^0 = 2828$

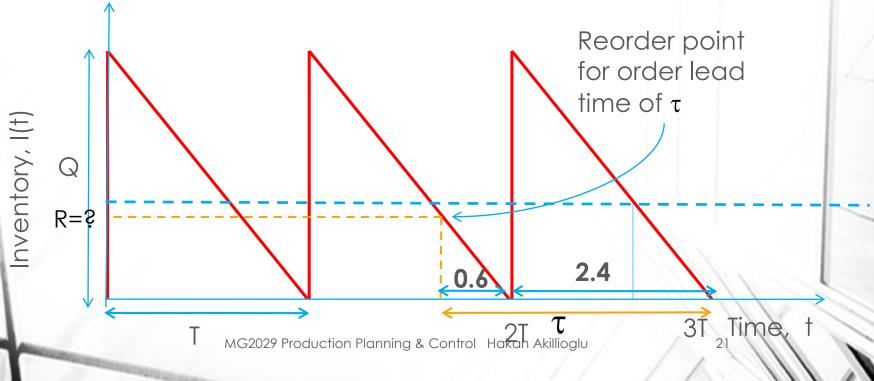
 $20000 * 2.5 + \frac{0.2 * 2.5 * 2828}{2} + \frac{100 * 20000}{2828} > 50,000$ • It follows that the optimal order size is Q = 4,000

MG2029 Production Planning & Control Hakan Akillioglu

Confidential

9

• What is the optimal value of the holding and setup costs for wafers when the optimal sources is used?


 $\frac{0.2 \times 2.3 \times 4000}{2} + \frac{100 \times 20000}{4000} = \1420

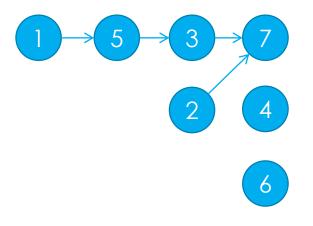
- If the replenishment lead time for wafers is 3 months, determine the reorder point based on the on-hand level of inventory wafers. $\tau = 3 \text{ months}$

T = Q/ λ = 4000 / 20000 = 0.2 years = 2.4 months

 $\tau > \lambda \implies \lambda(T * m) = (20,000/12)(0.25)(2.4) = 1,000$

On May 1, a lazy student suddenly realizes that he has done nothing on seven different homework assignments and projects that are due in various courses. He estimates the time required to complete each project and also notes their due dates.

Project	1	2	3	4	5	6	7
Time (days)	4	8	10	4	3	7	14
Due date	4/20	5/17	5/28	5/28	5/12	5/7	5/15


Because projects 1, 3 and 5 are from the same class, he decides to do those in the sequence that they are due. Furthermore, project 7 requires results from project 2 and 3. Determine the sequence in which he should do the projects in order to minimize the maximum lateness.

MG2029 Production Planning & Control Hakan Akillioglu

22

Lawler's algorithm

Job	Due date	Processing time
1	-10	4
2	16	8
3	27	10
4	27	4
5	11	3
6	6	7
7	14	14

MG2029 Production Planning & Control Hakan Akillioglu

Candidate jobs = $\{4, 6, 7\}$

Completion time of unasssigned jobs,

 $\tau = 4 + 8 + 10 + 4 + 3 + 7 + 14 = 50$

min[50-27, 50-6, 50-14] = min[23, 44, 36] = 23 at job 4

Candidate jobs = {6, 7}

 $\tau = 50 - 4 = 46$

min[46-6, 46-14] = 32 at job 7

MG2029 Production Planning & Control Hakan Akillioglu

24

7

4

Candidate jobs = $\{2, 3, 6\}$

 $\tau = 46 - 14 = 32$

min[32-16, 32-27, 32-6] = 5 at job 3

Candidate jobs = $\{2, 5, 6\}$

 $\tau = 32 - 10 = 22$

min[22-16, 22-11, 22-6] = 6 at job 2

2 3 7 4

A lazy student
Candidate jobs = {5, 6}
$\tau = 22 - 8 = 14$
min[14-11, 14-6] = 3 at job 5
Candidate jobs = {1, 6}

 $\tau = 14 - 3 = 11$

min[11 - 10, 11-6] = 5 at job 6

1 6 5 2 3 7 4
