# **Production Planning** and Control MG2029, 6.0

### **Production Engineering**

Hakan Akillioglu, Ph.D Researcher Department of Production Engineering





### **Course Crew**

| <i>Course Examiner</i><br>Antonio Maffei |                     | 08-790 78 71 | maffei@kth.se   |
|------------------------------------------|---------------------|--------------|-----------------|
| Course coordinator                       |                     |              |                 |
| Hakan Akillioglu                         |                     | 08-7906385   | haaki@kth.se    |
| <i>Lecturers</i><br>Eleonora Boffa       | Labs and VSM        | 076-5929174  | boffa@kth.se    |
| Magnus Wiktorsson                        | Operations planning | 08-790 94 28 | magwik@kth.se   |
| Seyoum Eshetu Birkie                     | Operations planning | 08-790 94 35 | seyoume@kth.se  |
| Daniel Semere                            | Operations planning | 08-790 74 83 | danielts@kth.se |
| Johanna Strömgren                        | Lean production     | 08-790 81 68 | stromg@kth.se   |
| Andreas Bohlin                           | Lean production     | 08-790 94 79 | abohl@kth.se    |
| Malin Pops Runsten                       | Lean production     | 08-790 94 27 | mrunsten@kth.se |
|                                          |                     |              |                 |

8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu



### **Course overview**

### Intended learning outcomes

After successfully completion of the course, students should be able to;

- explain fundamental principles and hierarchy embraced in the traditional production planning and control system,
- develop an aggregate plan for a multi component product manufacturing,
- suggest master production schedule and material requirement plan for a given aggregate plan,

8/29/2023

### **Course overview**

Intended learning outcomes

- Apply the proper inventory control method for a product with known demand,
- Describe the principles of push and pull control policies,
- Characterize the fundamental principles of lean philosophy and its tools,
- Apply value stream mapping for current and future cases to a given case study.

MG2029 Production Planning & Control Hakan Akillioglu



#### Lectures

- Theoretical aspects of the course will be presented and discussed in the lectures,
- Attendance to lectures is not a must

#### however

there will be some details given in lectures which might be beyond the coverage of the course literature. Since final exam will cover the content in lectures, your attendance is highly recommended.

• All lectures will be in classrooms unless otherwise stated.



### **Lecture Schedule**

| Week | Weekday  | Begin date | Begin<br>time | End<br>time | Activity | Room | Info                             | Lecturer   |
|------|----------|------------|---------------|-------------|----------|------|----------------------------------|------------|
| w35  | Tuesday  | 2023-08-29 | 08:00         | 10:00       | Lecture  | F2   | Course introduction              | HA, SB     |
| w35  | Thursday | 2023-08-31 | 10:00         | 12:00       | Lecture  | M2   | Aggregate planning               | MW         |
| w36  | Monday   | 2023-09-04 | 08:00         | 10:00       | Lecture  | M2   | Inventory Control                | DS         |
| w36  | Tuesday  | 2023-09-05 | 08:00         | 10:00       | Lecture  | D1   | Exercise lecture                 | MW, DS     |
| w36  | Thursday | 2023-09-07 | 10:00         | 12:00       | Lecture  | M2   | Lean Production -1               | JS, MR     |
| w37  | Monday   | 2023-09-11 | 08:00         | 10:00       | Lecture  | M1   | Lean Production -2               | AB, MR     |
| w37  | Tuesday  | 2023-09-12 | 08:00         | 10:00       | Lecture  | M2   | VSM - Value Stream Mapping       | EB         |
| w40  | Tuesday  | 2023-10-03 | 08:00         | 10:00       | Lecture  | M2   | Material Requirement Planning    | SB         |
| w40  | Thursday | 2023-10-05 | 10:00         | 12:00       | Lecture  | M2   | Operations Scheduling            | SB         |
| w41  | Monday   | 2023-10-09 | 08:00         | 10:00       | Lecture  | M1   | Exercise lecture                 | SB         |
| w41  | Tuesday  | 2023-10-10 | 08:00         | 10:00       | Lecture  | M2   | Todays challenges in planning    | MW         |
| w41  | Friday   | 2023-10-13 | 09:00         | 12:00       | Seminar  | TBC  | Toyotas 14 management principals | JS, AB, MR |
| w41  | Friday   | 2023-10-13 | 13:00         | 16:00       | Seminar  | TBC  | Toyotas 14 management principals | JS, AB, MR |

This is the final schedule of lectures. Central schedule is updated accordingly at August 28<sup>th</sup>.

8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu



Production game

- Production game is a kind of board game emulating production and assembly environments illustrating the problems encountered in a traditional environment.
- It is composed of 3 rounds running at separate dates. For each run you need to book a time among a number of occasions. Find invitation in Canvas under calendar invites.
- The responsible instructor for the game is Eleonora Boffa, boffa@kth.se. Activity room is M231, Brinellvägen 68.
- Attendance is obligatory.
- Being there on time is important.



First session is on Monday, book your seats on time.

Lean Training Lab (by Atlas Copco)

- Concepts and tools of the lean philosophy given in lectures will be observed and implemented on a real assembly system operated by students. Book a time in Canvas!
- Location will be at Production Engineering department, Brinellvägen 68, (beside ping pong table).
- Labs will start at15:00.
- Attendance is obligatory and being there on time is very important.
- Eleonora Boffa, boffa@kth.se, is the responsible instructor.
- <u>Video</u>

8/29/2023





A case study - Value Stream Mapping (VSM)

- You will have a group assignment about VSM.
- There will be 2 VSM tutorial/workshop sessions where you will have the opportunity to work as group on the case and ask your questions to VSM instructors.
- VSM assignment will be graded out of 5 points and the result will be added as bonus points to your final exam.
- Groups will be formed in Canvas under People -Groups. You will get further information in upcoming weeks.
- Eleonora Boffa, <u>boffa@kth.se</u>, is the responsible instructor.

8/29/2023



Toyota 14 management principles discussion

- Each student will be assigned to a principle. He/she needs to study and present it to his/her own group mates.
- Each presentation will be max 10 mins. Presentation material is completely up to the student.
- Attendance is obligatory.
- You will get further information in upcoming weeks.
- There will be two sessions at October 13th.
- Further information will be posted on details.
- Johanna Strömgren, Andreas Bohlin and Malin Runsten are the responsible instructors.

8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu





#### Attendance

- You cannot complete the course if you miss a compulsory activity.
- Missing a lab can only be compensated by attending it the following year !





### **Course Overview**

#### Assessment and examination

|   | Written Exam                    |                  | Production<br>Game | VSM Assignment                                                                                      | Lean Lab | Toyota<br>Discussion |
|---|---------------------------------|------------------|--------------------|-----------------------------------------------------------------------------------------------------|----------|----------------------|
|   | Basic part<br>(No VSM<br>bonus) | Advanced<br>part | P/F                | (Bonus points)                                                                                      | P/F      | P/F                  |
| E | 70%                             |                  | Pass               | Create Current state map and<br>populate it with the data provided in<br>the project                | Pass     | Pass                 |
| D |                                 | 50%              |                    |                                                                                                     |          |                      |
| с |                                 | 60%              |                    | Analyze the operations, propose<br>changes and create future state map<br>& action plan accordingly |          |                      |
| В |                                 | 70%              |                    |                                                                                                     |          | -                    |
| Α |                                 | 85%              |                    | Conduct peer-review of another project group                                                        |          |                      |

8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu

Confidential

2

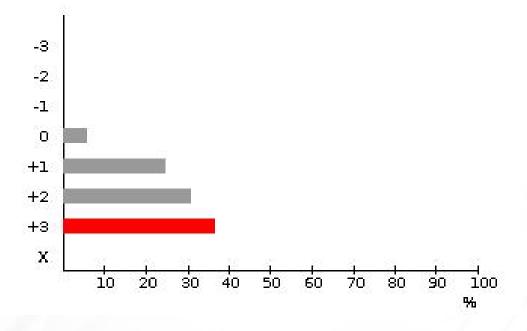
### **Course overview**

#### Literature

- Production and Operation Analysis,
   Steven Nahmias
   Related chapters are given in the Course PM in Canvas.
- Any lean book will be sufficient. Below book is an option.
   Lean Turn Deviations to Success, (English)
   Peterson, Broman et al., ISBN 978-91-633-4587-6
   Lean– Gör avvikelser till framgång, (Swedish) Peterson, Broman et al.,
   ISBN 978-91-633-2796-4
   Related chapters: All the chapters.
- The Toyota Way 14 Management Principles from the World's Greatest Manufacturer, Jeffrey Liker, ISBN 0-07-139231-9 (Related parts will be provided)

8/29/2023



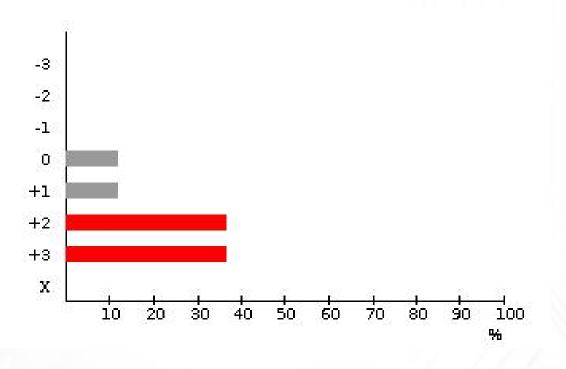



The course was challenging in a stimulating way

-3: strongly disagree with the statement...

0 : neutral to the statement...

+3: strongly agree with the statement




8/29/2023



#### I had the opportunity to try, and to learn from the experience

-3: strongly disagree with the statement...
0: neutral to the statement...
+3: strongly agree with the statement



MG2029 Production Planning & Control Hakan Akillioglu

5



#### What was the best aspect of the course?

-VSM project in combination with Lean training lab, the Production Game and all the rest interactive activities.

-The experiments or the simulations in famous companies. It gave you deep impression on what you learned in class.

-The open, informal and informative nature of the course.

-The course structure is very well thought through, mixing different exercises in order to give the student a holistic perspective. This structure should be a template for other courses at KTH. I feel that I will have great use of much of what I learned in the course.

-Lean lab. It was really interesting to see in practice how the LEAN tools can benefit a production line.

-That it was able to combine the theoretical aspect of learning with some visi to companies that you actually get to know things from the inside.

8/29/2023



### What advice would you like to give to future course participants?

-Solve the book's problems and pay attention to theory as much as problems.

-Repeat the information after each 1-2 courses and take notes, otherwise is somehow complicated without having previous experience to connect the dots between the taught material and the one in the Production and Operations Analysis book.

-take it seriously, it is really helpful

-Try to follow teacher every class, it's really useful and helpful.

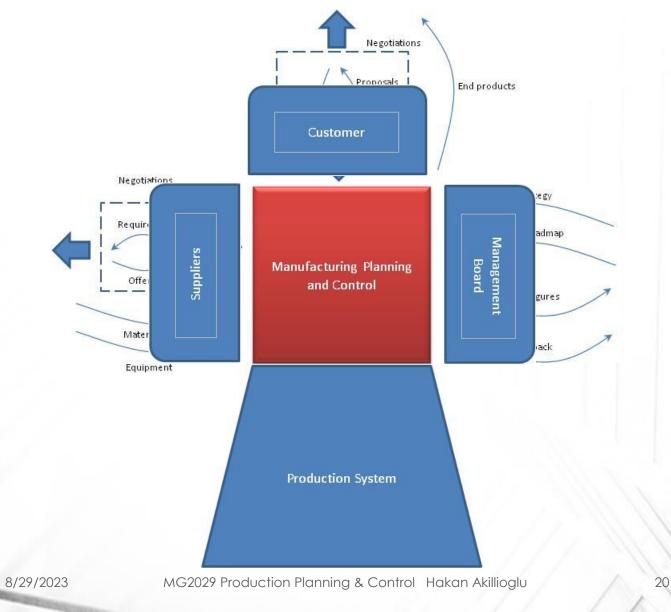


# **Production planning and control**

#### Definition

A production (or manufacturing) planning and control (PPC) system is concerned with planning, directing and controlling all aspects of manufacturing, including materials, scheduling machines and people, and coordinating suppliers and customers. (Vollmann et al., 2011, p. 1)

MG2029 Production Planning & Control Hakan Akillioglu


### **PPC systems nowadays**



- 1. Internationalization: Growth in international markets has had a crucial impact on the PPC context. Global customer base and international suppliers have become a reality. The composition of supply chains change based on opportunities. This requires international, transparent and effective PPC systems.
- 2. The role of the customer: Meeting customer requirements and service demands are crucial. Both product and process flexibility is needed to produce customized products at variable volumes.
- 3. Information technology: Responding to global coordination and communication requirements calls for the deployment of information systems to link functionally disparate, geographically dispersed and culturally diverse organizational units.

8/29/2023

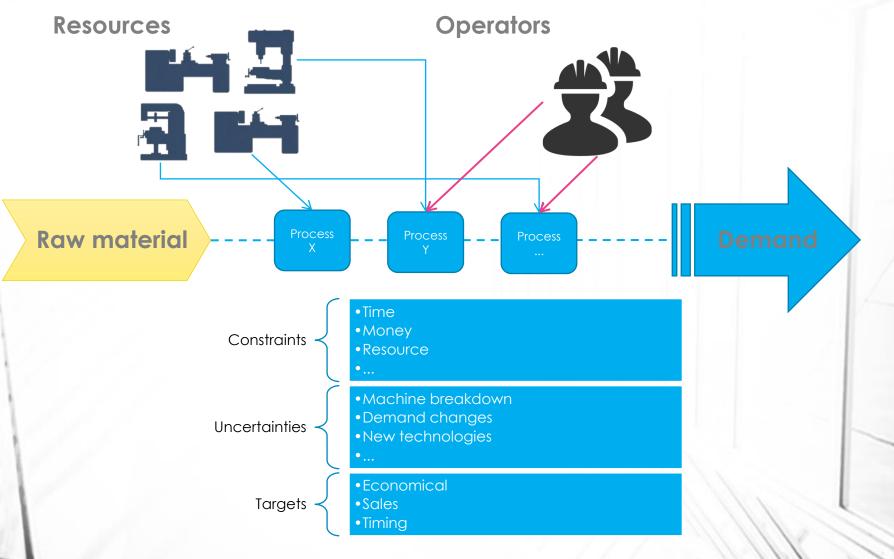
KTH vetenskap och konst



Confidential

)

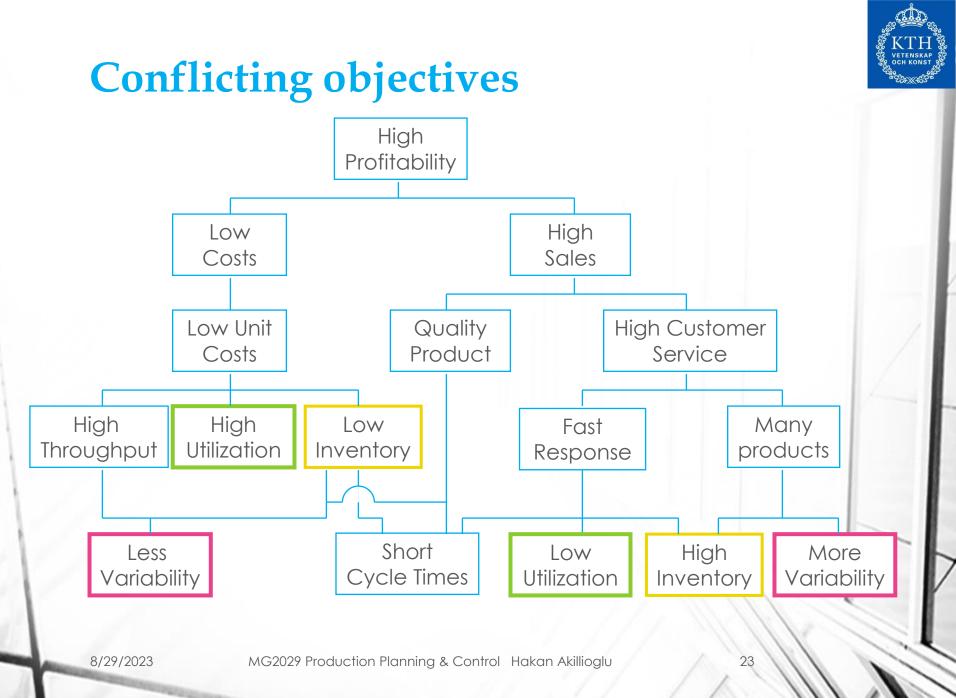
### **PPC Objectives**


#### PPC system has to be <u>adaptive</u> !

A PPC system needs to continuously adapt and respond to changes in:

- Company environment
- Strategy
- Customer requirements
- New supply chain opportunities
- Particular shop floor problems




### **PPC Objectives**



8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu

22



# **Objectives in general**

#### **Production planning and control**

- Effective utilization of resources.
- Steady flow of production.
- Estimate the resources.
- Ensures optimum inventory.
- Co-ordinates activities of departments.
- Minimize wastage of raw materials.
- Improves the labour productivity.
- Provides a better work environment.
- Facilitates quality improvement.
- Results in consumer satisfaction.
- Reduces the production costs.

8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu

#### Confidential

24



### **Objectives**

#### In short

To produce the product of right quality in right quantity at right time by optimum use of resources.

8/29/2023



## **Levels of production planning**

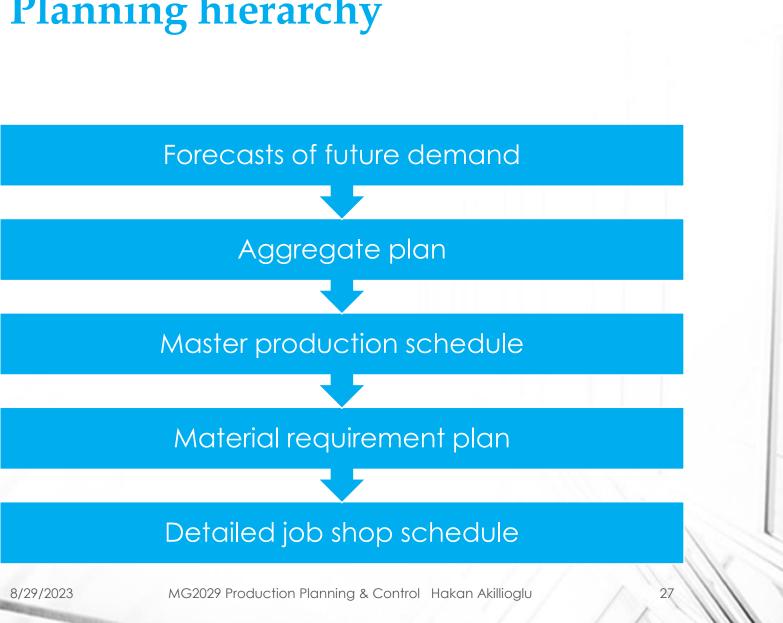
Factory planning

Planning of the facility location, decision of the number, responsibilities and relations of the departments.

#### Process planning

Determination of required process in order to convert inputs into desired outputs, allocation of them to departments, sequencing inside the departments.

#### Operations planning


Planning the details of the methods required to perform each operation such as selection of work centers, designing of tools required for various operations. Then the sequences of work elements involved in each operation are planned. Specifications about each transfer, work centers, nature of tools required and the time necessary for the completion of each operation are prescribed.

8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu

26

## **Planning hierarchy**





### An PPC framework





## **PPC support activities**

Under three time horizons: long, intermediate and short term

Long term objectives are achieving

- appropriate amount of capacity in terms of equipment, buildings, suppliers, manpower, machinery etc...
- optimum mix of human resource capabilities, technology and geographical location,
- proper capacity plan for key suppliers,

in order to meet the market demand of the future.

### **PPC support activities**

Intermediate term objectives

matching supply and demand in terms of both volume and product mix,

providing exact material and production capacity needed to meet customer demand

planning of capacity to determine employment levels, budgets, overtime and subcontracting needs, etc

### **PPC support activities**

#### Short term objectives

detailed scheduling of resources (people, material, equipment, facilities, time...)to meet demand,

tracking the use of resources and execution to extract performance measures such as equipment and labor utilisation, completion of orders, material consumption etc.

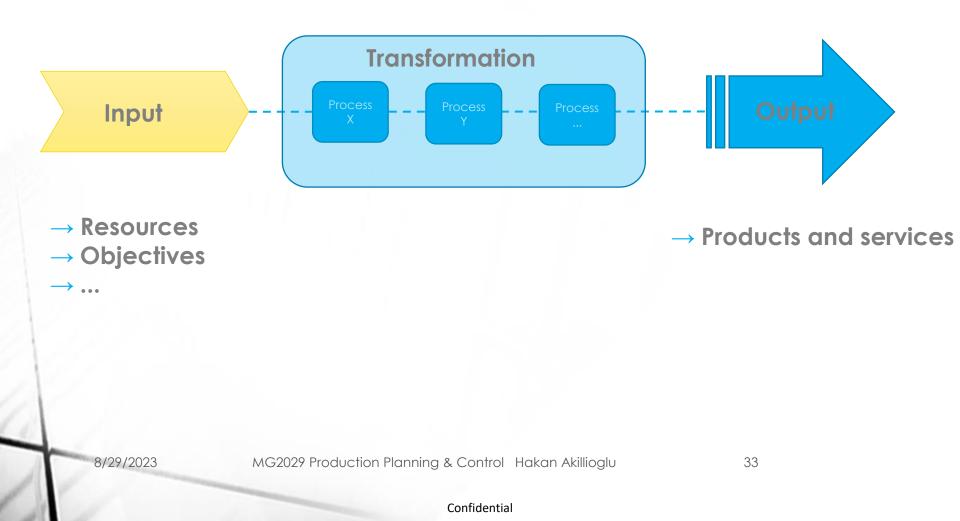
Incase of unexpected occurances provide problem solving support

8/29/2023

### **Production Control**

#### Definition and objectives

- Production control is a mechanism to monitor the execution of the plans. It has several functions.
  - Making sure that production operations are started at planned places and planned times,
  - Observing progress of the operations and recording it properly,
  - Analyzing the recorded data with the plans and measuring the deviations
  - Taking immediate corrective actions to minimize negative impacts of deviations from the plan,
  - Feeding back the recorded information to the planning department to improve future plans


MG2029 Production Planning & Control Hakan Akillioglu

32




### **Production control**

Open loop control system



## **Production control**

### Closed loop control system







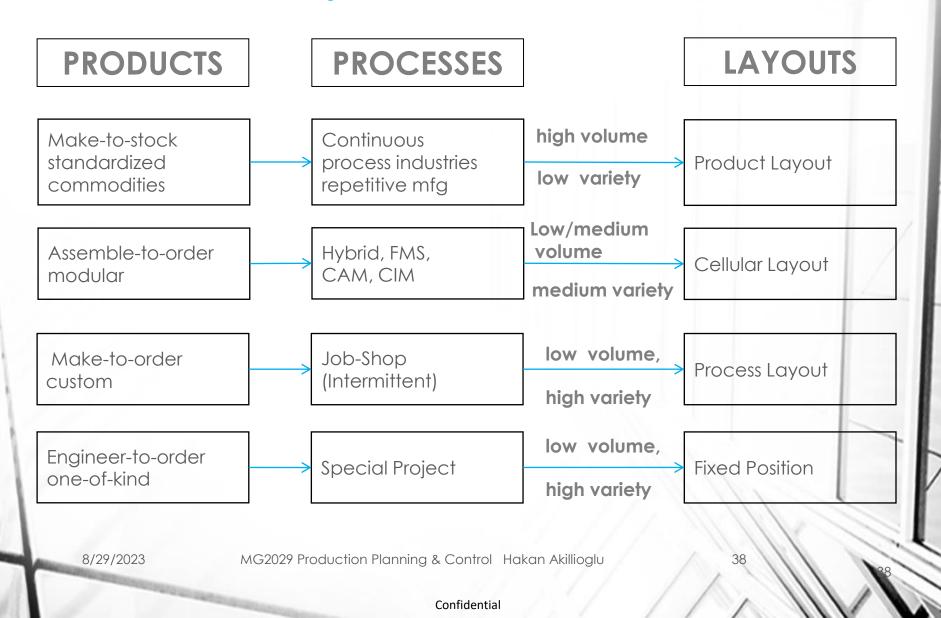
### **Production control**

### What to control

- Quality control
- Stock control
- Order processing/chasing against schedules
- Cost control (budgeting)
- People and labour productivity



### **Production system**


Definition

A transformation system in which a saleable product or service is created by working upon a set of inputs. Inputs are in the form of men, machine, money, materials etc.

8/29/2023



### **Production system**





### **Process flow structures**

|                      |         | Project | Job Shop | Batch<br>Process | Assembly<br>Line | Continuous<br>flow |            |
|----------------------|---------|---------|----------|------------------|------------------|--------------------|------------|
| Flow                 | No flow |         |          |                  |                  |                    | Continuous |
| Product variety      | High    |         |          |                  |                  |                    | Low        |
| Product volume       | Low     |         |          |                  |                  |                    | High       |
| Capital Invesment    | Low     |         |          |                  |                  |                    | High       |
| Resource Utilization | Low     |         |          |                  |                  |                    | High       |
| Variable Cost        | High    |         |          |                  |                  |                    | Low        |
| Human Contribution   | High    |         |          |                  |                  |                    | Low        |

8/29/2023

MG2029 Production Planning & Control Hakan Akillioglu



Fixed position layout

- The product or project remains stationary, and workers, materials, and equipment are moved as needed.
- <u>Examples:</u> Home building, ship and aircraft building, drilling for oil...



MG2029 Production Planning & Control Hakan Akillioglu



#### Process layout

- Similar processes (or processes with similar needs) are located together
- By grouping similar processes utilization of resources is improved
- Customers, products, patients move through the processes according to their needs
- Different products = different needs = different routes
- Complex flow pattern in the operation

Examples: Supermarkets, job-shops, hospitals



### Cellular layout

- machines are grouped into a cell that can process items that have similar processing requirements
- Based on group technology which involves grouping items with similar design or manufacturing characteristics into part families
- Could be considered as mini product layouts
- Can improve and simplify a functional/process layout
- Flexible but it might duplicate some resources



#### **Product layout**

- Also called line layout, flow line or assembly line
- Parts follow a specified route the sequence of workstations matches with the sequence of required operations
- Work Flow is clear, predictable, easy to control

Examples: Car assembly, paper manufacture, selfservice canteen

MG2029 Production Planning & Control Hakan Akillioglu