
Exercise 3: Evaluation of feeding and insertion costs for the Electrolux® handle.

Product and components:

Feeding and Orienting Costs

Geometrical Classification of Pin and Latch:

Part	Kind	Dimension	First digit classification		Second digit	Third digit
Latch:	Non rotational	A ≈38 mm B ≈ 8.8 mm C ≈9.5 mm	A/B	A/C	1.No symm 2. One feature Therefore the	Groove in Y direction therefore the third
			≈ 4.3	= 4		
			Therefore the first digit is 7		second digit is 4	digit is 4
Pin:	Rotational	L= 40 D=4	L/D		Part is ALPHA symm therefore The second	Part is BETA symm therefore The third
			10			
			Theref	fore the	digit is 0	digit is 0
			first di	git is 2	digit is •	

Latch code is 744 therefore:

$$C_r = 1.5 E = 0.1$$

Given that the longest part dimension is 38mm and the E=0.1 the maximum rate obtainable by a feeder is:

$$F_m = 1500*(0.1/38) = 3.9 parts/min$$

Hypotizing a necessary rate $F_r = 12 > F_m$ (so we use formula 5.4) and given the $C_r = 1.5$ we have

$$C_{r(f???)} = 0.03*(60/3.9)*1.5 = 69 cents$$

Should be C_f but it is a convention.

Pin code is 200 therefore:

$$C_r = 1 E = 0.9$$

Given that the longest part dimension is 40mm and the E=0.9 the maximum rate obtainable by a feeder is:

$$F_m = 1500*(0.9/40) = 33.75 \text{ parts/min}$$

Hypotizing a necessary rate $F_r = 12 < F_m$ (so we use formula 5.3) and given the $C_r = 1$ we have

$$C_f = 0.03*(60/12)*1 = 15 cents$$

Inserting Costs

Part	First Digit	Second Digit	W _c
Latch:	The part is not immediately secured and trajectory is not really straight therefore 2	The part needs to be hold in place and there are no feature for the alignment and there is resistance to insertion therefore 9	6.1
Pin:	The part is not inserted from above therefore	The part doesn't need to be hold down and it is not easy to align and insert therefore	2.5

Latch $C_i = 0.06*(60/12)*6.1 = 1.83 $!!!!!!!$

Pin $C_i = 0.06*(60/12)*2.5 = 75$ cents

Total cost:

Latch: Cf+Ci = 1.83 + 0.69 = 2.52\$

Pin: Cf+Ci = 0.75 + 0.15 = 0.9\$