Exercise 1: Evaluation of the Electrolux® handle.

Product and components:

Disassembled model components:

General process description:

Theoretical minimum number of parts (N_{min}):

With wise design choice is theoretically possible to reduce the number of parts down to a single one. Nevertheless given than we don't have enough knowledge about the product use we can safely assume that

$$N_{min}=4$$

This means that the required assembly time for a well-designed product would be:

Ideal Time =
$$N_{min} * t_a = 4 * 3 = 12 s$$

Assuming $t_a \; \mbox{equal}$ to 3s as suggested in the method

Proposed assembly sequence of operations:

ID	HANDLING	INSERTING
1	Grasping and orienting the Plastic	
	Handle	
2		Inserting the Plastic Handle in the
		Fixture
3	Grasping and orienting the Spring	
4	Grasping and orienting the Latch	
5		Inserting the Latch into the spring
6		Inserting the subassembly
		"Latch+Spring" in the plastic Handle,
		while keeping the alignment
7	Grasping and orienting the Pin	
8		Inserting the Pin while keeping the
		alignment
9	Unloading the fixture*	
10	Place in the final buffer*	

*not considered in the analysis

Relevant parameter	r of the	part for	orienting:
--------------------	----------	----------	------------

Part	Note	Angles	Size [mm]	Thickness [mm]	
Plastic Handle:	The part is in a bulk	α=360° β=360°	70-140	10-20	
Spring:	The part is in a bulk	α=360° β=360°	21	4	
Latch:	The part is in a bulk	α=360° β=360°	38	10	
Pin:	The part is in a bulk	α=180° β=0°	40	2 (0.5 Ø)	

ID			Code	Timing
1	Grasping and orienting the Plastic Handle	Н	andling "30"	1.95
2	Inserting the Plastic Handle in the Fixture	lr	serting "30"	2.00
3	Grasping and orienting the Spring	Н	andling "83"	5.60
4	Grasping and orienting the Latch	Н	andling "30"	1.95
5	Inserting the Latch into the spring	lr	serting "08"	6.50
6	Inserting the subassembly "Latch+Spring" in the plastic Handle, while keeping the alignment	Inserting "18"		9. <mark>50</mark>
7	Grasping and orienting the Pin	Handling "00"		1.13
8	Inserting the Pin while keeping the alignment	Inserting "03"		3.50
			Total t _{ma}	32.13 s

Proposed classification and timing for the operations*:

* Please refer to the relevant tables on the handouts for the code and timing

This means that an operator will on average needs 32.13 seconds to assemble one washing machine handle (in this case we have assumed the Delta model).

The consequent assembly efficiency is therefore:

$$E_{ma} = \frac{N_{min}t_a}{t_{ma}} = \frac{4*3}{32.13} \approx 0.37$$