

Assembly line balancing

Fabio Marco Monetti

Recap: assembly systems

- 1. Manual single-station assembly
 - Single workplace station \rightarrow full assembly
 - Complex product, small quantities, extremely high variance
 - One or more workers
- 2. Manual assembly line
 - Multiple workstation \rightarrow part of assembly/subassembly
 - Product passes along the line
 - One or more workers per station
 - Medium batch size, possible high variance
- 3. Automated assembly line
 - Automated methods for assembly
 - Less human workers as possible
 - High production rate, low variance

Manual assembly lines

Conveyor belt?
 Problems?
 Solutions?

SALBP

- Simple assembly line balancing problem
 - -SALBP-F
 - -SALBP-1
 - -SALBP-2
 - -SALBP-E

- Other assembly line balancing problem
 - -ARALBP
 - SDALBP
 - SUALBSP
 - -ASALBP...

Line balancing problem

- Things to keep in mind:
 - -List of parts
 - -Connections
 - -Assembly operations
 - -Precedence constraints
 - -Desired production rate
 - -Manual/automatic assembly
 - -Efficiency

Example

No.	Element description		Tri	Must be preceded by:	
1	Place frame on workholder and clamp	_	0.2		n.
2	Assemble plug, grommet to power cord	•	0.4		$T_{wc} = \sum T_{ej}$
3	Assemble brackets to frame		0.7	1	<i>i</i> = 1
4	Wire power cord to motor		0.1	1, 2	<i>j</i> -1
5	Wire power cord to switch	10.1	0.3	2	
6	Assemble mechanism plate to bracket	х .	0.11	3	
7.	Assemble blade to bracket	54 (S. C.	0.32	3	
8	Assemble motor to brackets		0.6	3, 4	E
9	Align blade and attach to motor		0.27	6, 7, 8	$T \leq -$
10	Assemble switch to motor bracket		0.38	5.8	C D
11	Attach cover, inspect, and test	8 <u>.</u>	0.5	9, 10	K _p
12	Place in tote pan for packing		0.12	n	•

Precedence constraints

Other constraints

- Zoning constraint
 - -Positive
 - -Negative
- Position constraint

(Not to be considered in course/examples/test)
→ But important to consider for the project!

Methods for line balancing

- 1. Largest-candidate rule
- 2. Kilbridge and Wester's method
- 3. Ranked positional weights method

Largest-candidate rule (LCR)

 $T_{c} = 1 \text{ min}, E = 1$

Work element	Т,	Immediate predecessors	Station	Element	T,	ΣT_{e} at station
	0.7	•	1	2	0.4	
3	0.7	1		5	0.3	
8	0.6	3, 4	÷	1	0.2	9
11	0.5	9, 10		4	0.1	1.00
2	0.4			6 (C) 6		
10	0.38	5.8	2	3	0.7	
. 7	0.32	3		6	0.11	0.81
5	0.3	2	3	8	0.6	,
9	0.27	6, 7, 8		10	0.38	0.98
1 .	0.2		4	7	0.32	2
12	0.12	11	• .	ò	0.32	0.50
6	0.11	· · · · · ·			0.27	0.59
4	0.1	12	5	11	0.5	
*	0.1	1,2	1000	12	0.11	0.62

Solution

17

Kilbridge and Wester's (K&W)

Work element	Column	T,	Sum of column T _e s
1	I	0.2	
2	1	0.4	0.6
3	II -	0.7	
4	II	0.1	
5	11.III [°]	0.3	1.1
6	111	0.11	
7	111	0.32	
8	III	0.6	1.03
9	IV	0.27	
10	IV	0.38	0.65
11	v	0.5	0.5
12	VI	0.12	0.12

Station	Element	T,	ST, at statio n
1	1	0.2	
	2	0.4	
	4	0.1	
	5	0.3	1.00
2	3	0.7	
<i>a</i> c	6	0.11	0.81
3	7	0.32	
	8	0.6	0.92
4	9	0.27	
	10	0.38	0.65
5	11	0.5-	
	12	0.12	0.62

Ranked positional weights (RPW)

Element	RPW	T,	Immediate predecessors
1	3.30	0.2	_
3	3.00	0.7	1
2	2.67	0.4	
4	1.97	0.1	1.2
8	1.87	0.6	3.4
5	1.30	0.3	2
7	1.21	0.32	3
6	1.00	0.11	3
10	1.00	0.38	5.8
9	0.89	0.27	6.7.8
11	0.62	0.5	9,10
12	0.12	0.12	11

Station	Element	Τ,	ΣT, at station
1	1	0.2	
	3	0.7	0.9
2	2	0.4	
	4	0.1	<i>a</i> .
14	5	0.3	
	6	0.11	0.91
3	8	0.6	
а л ¹	7	0.32	0.92
- 4	10	0.38	*
•	9	0.27	0.65
5	11	0.5	-9
	12	0.12	0.62

Model variations

- 1. Single-model line
- 2. Batch-model line
- 3. Mixed-model line

Computerized line balancing methods

- 1. COMSOAL
- 2. CALB
- 3. ALPACA

(Not investigated in this course)