

MG2040 Assembly Technology

Lecture 4: Design for Assembly

Outline

- Part one
 - Introduction to DFA
 - Design for Manual Assembly: the Boothroyd method
 - DFA uses
 - DFA benefits
 - DFA problems
 - Design Guidelines
- Part two
 - Manual vs automatic assembly
 - Design for automatic assembly
 - The KTH method

Intended Learning Outcomes

- Describe the purpose of DFA analysis and the main methodologies developed in literature
- Perform a complete DFA analysis with a given set of methods. In detail:
 - Manual assembly: the Boothroyd method for calculation of assembly efficiency
 - Automatic assembly: the Boothroyd method and the method developed at KTH, Stockholm.
- Suggest specific pattern for design improvements on a given product following the results of the DFA evaluation
- Discuss the basic tradeoffs between assembly and manufacturing needs regarding the product design

Assembly approaches

Part one

Introduction to DFA

DFA (Design for Assembly) is one of several DFx's, where each «x» is a charateristic of the product, its production or its life cycle that is important to someone in or in some context

Introduction to DFA

- Each DFx represents a body of knowledge, procedures, analyses, metrics and design recommendation intended to improve the product in the domain «x».
- Therefore, recomandations coming from DFx developped in different domains might conflict!
- The Assembly process, in all its forms, is the target domain of all the methodologies that fall in the DFA category

DFA: definition and purpose

ONE

 Design for assembly (DFA) is a process by which products are designed with ease of assembly in mind. If a product contains fewer parts it will take less time to assemble, thereby reducing assembly costs.

TWO

- Design for Assembly is a method of analyzing components and sub-assemblies in order to:
 - Optimize the assembly process steps
 - Identify part relevance
 - Estimate the cost of assembly –
- The purpose of DFA is to minimize assembly cost by optimizing the assembly process and reducing the number of parts.

- Although rules for good design in relation with the fabrication processes have been often applied in the past, DFA was first systematized in the 1960s by Geoffrey Boothroyd and his colleagues at the University of Salford, England.
- Large part of this seminar is based on the Boothroyd methodology¹ that still nowadays holds an outstanding position in this domain.
- The empirical studies of this author and his colleagues have been source of inspiration for many scholars and practitioners included the KTH team active in this field.

¹. Such methodology can be used as a «stand-alone» tool, but as the author suggests it achieves the best result in combination with a Design for Manufacturing analysis.

Some DFA methodologies...

DFA method	Authors	Country of origin
Assemblability Evaluation Method (AEM)	Ohashi Yano	Japan
Boothroyd-Dewhurst DFMA	Boothroyd Dewhurst	USA
A systematic approach to Design For Assembly	Miles Swift	UK
A designers guide to optimise the assemblability of the product design (DGO)	Hock	USA
ASSEMBLY	DeWinter Machiels	Belgium
Assembly Oriented Product Design (AOPD)	Bässler Warnecke	Germany
Assembly SYStem (ASSYST)	Arpino Groppetti	Italy
Assembly view	Sturges	USA
Design for Assembly Cost-effectiveness	Yamagiwa	Japan
Product and System Design for Robot Assembly	Davisson Redford	UK
Product Design Merit	Zorowski	USA
The DFA House	Rampersad	The Netherlands

Ideal use of DFA

According to the actual embodiment of the method it is possible to classify DFA as:

- Methods that involves calculating timing and related costs for the assembly operations.
- Methods based on a point scale which gives a relative measure of assembly difficulty.
- Hybrids (combination of the ones above)

Underlying principle:

- Too much time or too low a score are indicators that something doesn't work!
- We need to look in detail into the methods' suggested causes for such occurrences!

Classification of DFA 2

Assembly can be seen as a two level problem, thus DFA can be classified as:

- DFA in the Small: methods or process steps that can be applied to one part at the time by an engineer working alone
- DFA in the Large: methods or process steps that involve consideration of all the parts in an assembly at once and that may need many people with different skills to interact

The dawn of DFA

Good design... back in the 60-70's

The dawn of DFA

The "right" one is not so right!!!

	Wrong	Right
Setup	0.015	0.023
Process	0.535	0.683
Material	0.036	0.025
Pierce part	0.586	0.731
Tooling	0.092	0.119
Total manufacture	0.678	0.850
Assembly	0.000	0.200
Total	0.678	1.050

- The basic input to any DFA method are:
 - A model, drawing or prototype of the assembly
 - A proposed assembly sequence.
- The DFA analysis depends largely on whether the product has to be assembled manually, with special-purpose automation, with general-purpose automation (robot) or with combinations of them.
- The cost of the different solution should be evaluated and compared in order to select the suitable one

Design for Manual Assembly

The focus of this first part of the seminar is manual assembly. Two are the main areas in the process of manual assembly:

- 1. Part Handling (acquiring, orienting, moving)
- 2. Part Insertion and Fastening

A relevant part of any manual assembly process are the nonvalue added process steps such as quality check, replenishing the components in the shelves and so on. We will leave these out from our analysis

The DFA index

This index is also called <u>assembly efficiency</u> and it is used to give a synthetic evaluation on a given design. Two are the factors that influence this index:

- 1. The number of parts in a product
- 2. The ease of handling, insertion and fastening of the part

DFA Index

The index is obtained by dividing the theoretical minimum assembly time by the actual assembly time. The equation for calculating the DFA index is as follows:

$$E_{ma} = \frac{N_{min}t_a}{t_{ma}}$$

Where:

 N_{min} = theoretical minimum number of parts required

 t_a = basic assembly time for one part

 t_{ma} = estimated time to complete the assembly of the product

Theoretical minimum number of parts required N_{min}

- The main issue in order to produce a good design for assembly is to *keep the number of components as low as possible*.
- Therefore each part in a conceptual design has to be evaluated against the following criteria:
 - 1. During operation of the product, does the part move relative to all other parts already assembled. Only gross motion should be considered- small motions that can be accommodated by integral elastic element, for example are not sufficient for a positive answer.
 - 2. Must the part be of a different material than or be isolated (insulation, electrical isolation, vibration damping...) from all other parts already assembled? Only fundamental reasons concerned with material properties are acceptable.
 - 3. Must the part be separate from all other parts already assembled because otherwise necessary assembly or disassembly of other separate parts would be impossible.

MOST IMPORTANT CONCEPT TODAY!!!

N_{min} alternative set of question

These questions cover the same aspects than the previous but are formulated differently:

- 1) Is the component/sub-assembly used only for fastening or securing other items? If yes, try to eliminate.
- 2) Is the component/sub-assembly used only for connecting other items (for example, wiring harnesses, belts, chains)? If yes, try to eliminate.
- 3) During operation, does the component move relative to all other parts already assembled? If no, skip question #4
- 4) Must the part be made of a different material than, or isolated from all other parts already assembled? Only fundamental reasons concerned with material properties are acceptable. If no, go to question #5
- 5) Must the part be separate from all other parts already assembled because of any necessary assembly or disassembly of the other parts would otherwise be impossible? If no to questions #3-5, part is theoretically unnecessary.
- 6) If this is a part in a sub-assembly, can any part be combined with another part in the parent assembly?

A flow chart for the process

Theoretical minimum number of parts required N_{min}

Remember to exclude from this count all the *fasteners*!

More facts... the Ford/GM multiplier effect

- For every product part, there are about 1000 manufacturing equipment parts
- Or, for every toleranced dimension or feature on a product part, there are about 1000 toleranced dimensions or features on manufacturing equipment
- Such "equipment" includes fixtures, transporters, dies, clamps, robots, machine tool elements, etc

The basic assembly time \mathbf{t}_a

- Average time for a part that presents no handling, insertion or fastening difficulties (ideal part)
- Usually the value is set to 3s

Estimated time for product assembly \mathbf{t}_{ma}

- It is the time necessary to assemble a given product in its current design.
- Includes all the necessary handling, insertion and fastening operation
- It is calculated following specific tables elaborated through empirical studies

Estimated time for product assembly \mathbf{t}_{ma}

Example of table¹ for calculation of the tma:

				Parts are easy to grasp and manipulate					Parts present handling difficulties (1)				
				Thickness >2 mm			Thickness ≤2 mm Th		Thic	ckness >2 mm		Thickness ≤2 mm	
Key: One hand			Size >15 mm	6 mm≤ size >15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm	Size >15 mm	6 mm ≤ size ≤15 mm	Size <6 mm	Size >6 mm	Size ≤6 mm	
		0	1	2	3	4	5	6	7	8	9		
grasped and by one hand id of grasping tools	$(\alpha+\beta) < 360^{\circ}$		0	1.13	1.43	1.88	1.69	2.18	1.84	2.17	2.65	2.45	2.98
	360* ≤ (α+β) < 540*		1	1.5	1.8	2.25	2.06	2.55	2.25	2.57	3.06	3	3.38
			2	1.8	2.1	2.55	2.36	2.85	2.57	2.9	3.38	3.18	3.7
	$540^\circ \le (\alpha + \beta)$	3	1.95	2.25	2.7	2.51	3	2.73	3.06	3.55	3.34	4	
ated a ted													
Parts call manipul without without $(\alpha + \beta) = 2.50^{\circ}$													

MANUAL HANDLING-ESTIMATED TIMES (s)

¹. For the complete set of tables refer to the handouts

Estimated time for product assembly ${f t}_{ma}$

Each operation should be classified with a numer consisting of two digits:

- 2. ID of the column.

MANUAL HANDLING-ESTIMATED TIMES (s)

The final sum of the required times for each operation gives an indication of the needed operator time for such assembly

Quiz

- Question: which one are the best among the couples of part of the one down here and why?
- Think about it alone or with one of your colleague for some minutes and then I will ask to some of you.

Definition for the handling tables

Alpha is the rotational symmetry of a part about an axis perpendicular to its axis of insertion

Beta is the rotational symmetry of a part about its axis of insertion

Definition for the handling tables

Thickness: is the leght of the shortest side of the smallest rectangular prism that encloses the part. However if the part is cylindrical, or has a regular poligonal crosssection with five or more sides and the diameter is less than the lenght, then thickness is defined as the radius of the smallest cylinder that can enclose the part

Definition for the handling tables

Size: is the leght of the longest side of the smallest rectangular prism that encloses the part.

Definition for the insertion tables

Holding down required: the partrequireg gripping, realignment, or holding down before it is finally secured.

Easy to alignand position: the insertion is facilitated by welldesigned chamfers or similar features

Obstructed access: the space available for the operation causes a significant increase in the assembly time

Restricted vision: the operator has to rely mainly on tactile sensing during the assembly process

DFA uses

- 1. As the basis for concurrent engineering studies to provide guidance to the design team in simplifying the product structure, to reduce assembly costs, and quantify the improvements: the sooner in the design phase such method is applied the better results are likely to be achieved
- 2. As a benchmarking tool to study competitors' products and quantify assembly difficulties
- 3. As a should-cost tool to help negotiate suppliers contracts.

DFA benefits

Beside the expected cost reduction in assembly, a correct DFA implementation brings a set of secondary benefits that often outweigh the direct ones:

- Improved quality and reliability
- Reduction in production equipment and part inventory
- Given the integrative power of assembly DFA can stimulate discussion about all the other aspects of design and manufacturing

DFA problems

- DFA is that it focuses on part reduction. This often results in multi-functional parts with very high complexity, which increases manufacturing costs. It is necessary to find the balance between assembly costs and manufacturing costs
- DFA recommendation can conflict also with recommendations from other DFx methodologies (i.e., design for recycling)
- Design time can be prolonged by the pursuit of the desired level of DFA index.
- Eliminating and consolidating parts can deprive the assembly process of needed adjustment opportunities

As a result of experience in applying DFA, it has been possible to develop general design guidelines that attempt to consolidate manufacturing knowledge and present them to the designer in the form of simple rules to be followed when creating a design.

Once again, two are the macro areas addressed by such guidelines:

Handling:

- Acquiring
- Orienting
- Moving

Insertion and Fastening

Design parts that have an end-to-end symmetry and rotational symmetry about the axis of insertion. If this cannot be achieved, try to design parts that have the maximum possible symmetry

Design parts that, in those instances where the part cannot be made symmetric, are obviously asymmetric

Design guidelines for manual handling 3

Provide features that prevent jamming of parts that tend to nest or stack when stored in bulk

Avoid features that allow tangling of parts when stored in bulk

Design guidelines for manual handling 5

Avoid parts that stick together or are slippery, delicate, flexible, very small or very large, or that are hazardous to the handler (i.e., parts that are sharp)

Design so that there is little or no resistance to insertion and provide chamfers to guide the insertion of two mating parts. Generous clearance should be provided, but care must be taken to avoid clearances that result in a tendency for parts to jam or hang-up during insertion

Incorrect geometry can allow a part to jam during insertion

Provision of air-relief passages to improve insertion into blind holes

Design for ease of insertion – assembly of long-stepped bushing into counterbored hole

Provision of chamfers to allow easy insertion

Standardize parts

Standardize by using common parts, processes, and methods across all models and even across product lines to permit the use of higher volume processes that normally result in lower product cost

Use pyramid assembly – provide for progressive assembly about one axis of reference. In general it is better to assemble from the above

Avoid the necessity of holding parts down to mantain their orientation during manipulation of the subassembly or during the placement of another part. If holding down is required, then try to design so that the part is secured as soon as possible after it has been inserted

Design so that a part is located before it is released.

When common mechanical fasteners are used, the following sequence indicates the relative cost of different fastening processes.

Avoid the need to reposition the partially completed assembly in the fixture

Avoid connections

Further Guidelines 2

Design so that access for assembly operations is not restricted

Avoid adjustments

Further Guidelines 4

Use kinematic design principles

Further Guidelines 4

 \bigcirc C Over-constrained Kinematically sound

Quiz... again

- Question: which one are the best among the couples of part of the one down here and why?
- Think about it alone or with one of your colleague for some minutes and then I will ask to some of you.

Questions for the formative assessment

1. Explain why the right design in the following guideline is not so right

2. Report and discuss the rationale behind the three questions that allows to calculate the Nmin of part in Boothroyd methodology.

3. Define all the term of the following equation:

$$E_{ma} = \frac{N_{min}t_a}{t_{ma}}$$

4. Discuss the following design guidelines: which column is best for assembly and why do such solutions improve the assembly efficiency?

Questions for the formative assessment

- 5. List and describe the possible uses of DFA
- 6. List and describe the benefit of applying DFA
- 7. List and describe the problems connected with the use of DFA
- 8. Which one of the following design solution is better from the assembly perspective and why.

Tutorial 1 and exercise:

Boothroyd method for Design for manual assembly

Manual Vs. Automatic

Human are flexible and sensitive:

- Turning the assembly over
- Determining if a part is suitable for use Machines are quick and reliable:
- Picking up little parts
- Handling hazardous parts
- Placing integrated circuits with a few µm tolerance at a rate of 6 per second
- Tighting fasteners at an exact torque everytime

Automatic Assembly

- Automatic handling is usually the bigger problem in applying automation for the assembly process: design must focus on feeding and orienting components rather than simply inserting
- Automation forces to product redesign: savings resulting from product redesign often outweigh those resulting from automation

DFA and Automatic Assembly 1

DFA is vital in the domain of automatic assembly

- In manual Assembly DFA targets timing of the basic operation.
- In automatic assembly the time taken to complete the assembly does not control the cost. Rather, it is the cycle rate of the assembly system.

Relevant parameters for the overall analysis:

- Cost of the equipment
- Personnel cost (directly connected with the system)
- Nominal assembly rate of the system (included down-time)

DFA and Automatic Assembly 2

Relevant parameters for the punctual analysis on single parts:

Automatic Feeding

Feeding and Orienting 1

The cost of feeding each part is given by:

$$C_f = \left(\frac{60}{F_r}\right) R_f$$
 cents

Where:

 F_r = required delivery rate (parts/min) R_f = cost (cents/s) of using the feeding equipment

Feeding and Orienting 2

Using a simple payback method we have: $C_E E_0$

$$R_f = \frac{C_F E_0}{5760 P_b S_n} \text{ cents/s}$$

Where:

$$C_F = \text{Feeder cost ($)}$$

- $E_0 =$ Equipment factory overheads
- P_b = payback period (months)
- S_n = number of shift per day
- 5760 = number of available seconds in one shift working for a month divided by 10 convert dollars in cents

Assuming:

$$C_F = 5.000 \$$$

$$E_0 = 2 \text{ (factory overheads} = 100\%)$$

$$P_b = 30 \text{ months}$$

$$S_n = 2 \text{ shifts per day}$$

$$R_f = \frac{5000*2}{5760*30*2} = 0,03 \text{ cents/s}$$

The cost of feeding each part is therfore: $C_f = 0.03 \left(\frac{60}{F_r}\right) C_r$ cents

Where:

 C_r = relative cost factor to any feeder in consideration (function of the complexity of the part: see related table)

Feeding and Orienting 5

Conclusion:

- The higher the required feeding rate the lower the cost of automatic feeding: i.e. a machine that cycle in 6s has an associated cost that is double compared to a machine that cycle in 3s
- The more expensive the equipment the higher the cost of automatic feeding

Feeding and Orienting 6

Feeding and Orienting 7

The maximum feed rate is given by:

$$F_m = 1500 \frac{E}{l}$$
 parts/min

Where:

- E =orienting efficiency (from empirically defined tables)
 - l = part dimension in the direction of feeding

And assuming a feeding speed of 25 mm/s

Feeding Difficulties

Problems in feeding might arise because of:

- Shape of the part
 - Thin edges (ovelapping)
 - Tangle
 - Nest
- Size of the part
- Light weight parts
- Sticky parts
- Delicate parts
- Flexible parts
- Abrasive parts

In high speed automatic assembly system insertions are performed through specifically designed workheads. The cost of using such workheads on each part is given by:

$$C_i = \left(\frac{60}{F_r}\right) R_i$$
 cents

Where:

- F_r = required delivery rate (parts/min)
- $R_i = \text{cost} (\text{cents/s}) \text{ of using the}$ workhead

Using again a simple payback method we have: $W_{c}E_{0}$

$$R_i = \frac{W_c E_0}{5760 P_b S_n} \text{ cents/s}$$

Where:

$$W_c = Workhead cost ($)$$

- $E_0 =$ Equipment factory overheads
- P_b = payback period (months)
- S_n = number of shift per day
- 5760 = number of available seconds in one shift working for a month divided by 100 convert dollars in cents

Assuming:

 $W_c = 10.000 \$$ $E_0 = 2 \text{ (factory overheads} = 100\%)$ $P_b = 30 \text{ months}$ $S_n = 2 \text{ shifts per day}$ $R_i = \frac{10000 * 2}{5760 * 30 * 2} = 0,06 \text{ cents/s}$

Insertion 4

The cost of feeding each part is therfore:

$$C_i = 0.06 \, \left(\frac{60}{F_r}\right) W_r$$

Where:

 W_r = relative cost factor to any workhead in consideration (function of the complexity of the process: see related table)

Nominal Assembly Rate

The required rate of output of the system. It is determined by:

- Required volumes
- Number of working days in a year
- Number of shifts
- Minutes in a working shift

Nominal Assembly Rate

A simplified expression for it is given by:

Nhere:
$$F_r = \frac{V_r}{T_a}$$

 V_r = required Volumes per year T_a = available minutes per year

$$T_a = 480 D_w S_n$$

 D_w = working days per year S_n = working shifts per day 480 = minutes in a shift

Part reduction is even more important in automatic assembly as each part requires:

- Feeder
- Workhead
- Portion of the transfer device

Design Guidelines for Automatic Assembly

Design Guidelines for Automatic Assembly

Self centralizing screws

Design Guidelines for Automatic Assembly

Automatic assembly requires always a base object on which the assembly can be built. Suche base object should be designed for a for a quick and accurate location on the work carrier

Design Guidelines for Feeding and Orienting

Design Guidelines for Feeding and Orienting

No feature sufficiently significant for orientation

Triangular shape of part makes automatic hole orientation difficult

When correctly oriented will hang from rail

Nonfunctional shoulder permits proper orientation to be established in a vibrant feeder and maintained in transport rails

Difficult to orient with respect to small holes

Flats on the sides make it much easier to orient with respect to small holes

Design Guidelines for Feeding and Orienting

Because it has a Through Groove!!!

Design Guidelines for Product Design

- If possible design the product so that it can be built in layers, each part being assembled from above.
- Avoid expensive and time-consuming fastening operations such as screws and soldering
- Avoid shapes that allow the part to tangle with similar part when placed in bulk in the feeder.
- Makes the part symmetrical, or if not possible exagerate asymmetrical features to facilitate orienting

This section is based on a method developed at KTH in 2001 by Dr. Stephan Eskilander.

Design for Automatic Assembly
A Method for Product Design: DFA2

This method is based on scores and it is articulated in two levels of evaluation:

-Product

-Single Part

and on the following calculation of these indexes:

Product level

Assembly Index = $\frac{Total sum}{Maximum point} = \frac{Score}{63} = -\%$ Part level Assembly Index = $\frac{Total sum}{Maximum point*number of parts} = \frac{Score}{162*} = -\%$

PRODUCT LEVEL

(Questions per product/module)

Reduce number of parts

Unique parts

Base object

Design base object

Assembly directions

Parallel operations

Chain of tolerances

Discascinibly

Packaging

Design for Disassembly including Repair and **Recyclying has** traditionally been part of DFA. The rise in importance in the last years, due to environmental legislation, has pushed to develop more customized methodologies

Part level

PART LEVEL

(Questions for the assembly process)

Example of Application

ID	Component			
1	Metal cupola			
2	Long screw			
3	3 Plastic top			
4	Base unit			
5	Square nut			
6	Screw			
7 Spring				
8	Washer			
9	Nut			
10	Plastic knob			

PRODUCT LEVEL

(Questions per product/module)

Reduce number of parts

Unique parts

Base object

Design base object

Assembly directions

Parallel operations

Chain of tolerances

Disassembly

Packaging

Reduce number of parts within each module. Too many parts contribute to large work content within the module.	
Number of parts ≤ 20	9 points
20 < Number of parts ≤30	3 points
Number of parts > 30	1 point

The parts in the bicycle bell are 10 therefore the score we assign is 9

Proportion of unique parts is the ratio	
Number of unique parts in the object	
Total number of parts in the object	
Use only one type of part where it is possible.	
Proportion of unique parts < 40 %	9 points
40 % \leq Proportion of unique parts \leq 70 %	3 points
Proportion of unique parts >70 %	1 point

None of the 10 parts in the bicycle bell is repeated therefore the score we assign is 1

Base object is a first part that the rest of the assembly can proceed from. All assembly operations are performed on the	
base object, which leads to simple fixtures and few assembly directions	
With have object	0 mainte
with base object.	9 points
Without base object.	1 point

The part called *base unit* can be used as base object therefore the score we assign is 9

Design base object for easy fixturing.	
The base object is designed in a way that no further fixture,	9 points
besides for the base object itself, is needed for the rest of the	
assembly. The base object does not need repositioning during	
assembly. One assembly direction.	
Assembling the module requires multiple fixtures that each	3 points
has only one fixed position. The base object has to be	
reoriented or transferred between fixtures during assembly.	
Assembling the module requires one or multiple fixtures that	1 point
have several movable positions. The base object must be	
transferred between and/or repositioned in the fixtures during	
assembly.	

The base object needs to be reoriented during the assembly therefore the score we assign is 3

Assembly directions, totally in the whole product/module	
One assembly direction into a fixed base object.	9 points
Two assembly directions into a fixed base object	3 points
(alternatively one assembly direction in a movable base object	
with two different fixed positions).	
Three or more assembly directions into a fixed base object	1 point
(alternatively assembly in a movable base object with several	
different fixed positions).	

The Assembly requires more than three assembly directions in a multi positioned base object therefore the score we assign is 1

The product should be structured to ensure that all assembly operations occur from one direction, preferably from above (also called hamburger assembly, pyramid assembly or sanwitch assembly).

The assembly process can be largely been carried on in parallel therefore the score we assign is 9

Chains of tolerances should be minimised to have a more	
reliable assembly process.	
No chains of tolerances significant for the assembly process.	9 points
Only the tolerance of each individual part is significant.	
There are chains of two tolerances significant for the	3 points
assembly process in the module.	
There are chains of three or more tolerances significant for	1 point
the assembly process in the module.	

The assembly requires correct relative positioning of subsets screw-nut, therefore the score we assign is **3**

Summary: product level

		PRO	DUCT LE	VEL			
Reduce number of parts	Unique parts	Base object	Design base object	Assembly directions	Parallel operations	Chain of tolerances	SUM
9	1	9	3	1	9	3	35

Assembly Index $= \frac{Total sum}{Maximum point} = \frac{35}{63} \approx 56\%$

(Questions for the assembly process)

Need to assemble part?

Level of defects

Orientation

Non-fragile parts

Hooking

Center of gravity

Shape

Weight

Length

	Gripping
]	Assembly motions
	Reachability
]	Insertion
]	Tolerances
]	Hold assembled parts
]	Fastening method
]	Joining
	Check/adjust
-	

Part level

Questions:

- 1. Does the part move, relative to other already assembled parts during normal use of the finished product?
- 2. Does the part has to be of other material than already assembled parts, or isolated from them?
- 3. Does the part has to be separate from already assembled parts because assembly or disassembly otherwise is impossible?

The first part in an assembly should be a base object and must by definition exist. Thereby, the base object is the teaget of comparison for part number two regarding questions one and two

Need to assemble parts? The questions described above have to be answered for evaluation. A part that does not	
perform a relative motion has to be of another material or must be separated in order for assembly/disassembly reasons	
to be eliminated or integrated.	
The part has reasons for being separate (at least one "yes" to the three questions)	9 points
The part should be eliminated/integrated (all three questions answered with "no") but the part is still a separate part in the	1 point
product.	

Need to assemble part?

	ID	Component	Score	
	1	Metal cupola	9	Converts the energy
	2	Long screw	1	from the the spring in
	3	Plastic top	1	Souria
Begin	4	Base unit	9	mechanism spring-
	5	Square nut	1	cupola and provide
	6	Screw	1	connection with the
	7	Spring	9 -	
	8	Washer	1	the energy of the user
	9	Nut	1	to the cupola
	10	Plastic knob	1	

Level of defects of parts that are to be assembled. Geometric	
defects that might cause unscheduled stops in an automatic	
assembly system should be avoided, or parts with functional	
defects.	
P < 0,1 %	9 points
$0,1 \% \le P \le 1,5 \%$	3 points
P > 1,5 %	1 point

Level of defects

ID	Component	Score	
1	Metal cupola	3	
2	Long screw	9	
3	Plastic top	3	9 for the consumables
4	Base unit	3	3 for customized parts
5	Square nut	9	(shape, material
6	Screw	9	issues)
7	Spring	1	
8	Washer	9	
9	Nut	9	
10	Plastic knob	3	

Orientation. If a part could be delivered oriented, cost and uncertainty in the process would be eliminated.	
No need for re-orientation of the part	9 points
Part is partly orientated, but needs final orientation	3 points
Part orientation needs to be re-created.	1 points

Orientation

- From correct design: shape and center of gravity
- From the supplier: they have the part exactly orientated during the manufacturing process!!

Orientation

ID	Component	Score
1	Metal cupola	1
2	Long screw	1
3	Plastic top	1
4	Base unit	1
5	Square nut	1
6	Screw	1
7	Spring	1
8	Washer	1
9	Nut	1
10	Plastic knob	1

Feeding often requires non-fragile parts	
Part is not fragile	9 points
Part can be scratched, which is not acceptable.	3 points
Parts can not fall without deforming	1 point

Non-fragile parts

ID	Component	Score
1	Metal cupola	9
2	Long screw	9
3	Plastic top	9
4	Base unit	9
5	Square nut	9
6	Screw	9
7	Spring	9
8	Washer	9
9	Nut	9
10	Plastic knob	9

The metal cupola affects the estetic

State during feeding, hooking: There should be no risk of parts hooking into each other for example in a bulk vibration feeder.		Man. ref. time
Parts cannot hook to each other and tangle up.	9 points	0 s
Parts can hook to each other and tangle up.	1 point	0,7 s

State during feeding: hooking

ID	Component	Score	
1	Metal cupola	9	
2	Long screw	9	
3	Plastic top	9	
4	Base unit	1	
5	Square nut	9	
6	Screw	9	
7	Spring	1	
8	Washer	9	Ser.
9	Nut	9	
10	Plastic knob	9	

Centre of gravity for the part should be positioned for use in feeding. Drop the part repeatedly on a table to determine its state of rest. Simple orientation often means reliable and cost effective feeding.	
Part has a stable state of rest and orients itself with correct side upwards.	9 points
Part has a stable state of rest, but orients itself with wrong side upwards.	3 points
Part has an unstable state of rest and orients itself with different sides upwards.	1 point

Center of gravity

ID	Component	Score
1	Metal cupola	3
2	Long screw	9
3	Plastic top	3
4	Base unit	1
5	Square nut	9
6	Screw	9
7	Spring	1
8	Washer	9
9	Nut	1
10	Plastic knob	9

Shape of a part is the sum of α - and β - symmetry. Symmetrical parts decrease the need for unique orientation.		Man. ref. time
$\alpha + \beta < 360$	9 points	0 s
$360 \le \alpha + \beta < 540$	3 points	0,6 s
$540 \le \alpha + \beta \le 720$	1 point	0,9 s

Shape

ALFA = 90 ALFA = 180 ALFA = 360 ALFA = 180 ALFA = 0

BETA = 90 BETA = 180 BETA = 360

BETA = 0

BETA = 0

Shape

ID	Component	Score
1	Metal cupola	3
2	Long screw	3
3	Plastic top	3
4	Base unit	1
5	Square nut	9
6	Screw	3
7	Spring	1
8	Washer	9
9	Nut	3
10	Plastic knob	3

Weight, of the part. This affects the choice of equipment.		Man. ref. time
$0,1 \text{ g} \le G \le 2 \text{ kg}$	9 points	0 s
$0,01 \text{ g} \le G < 0,1 \text{ g} \text{ or } 2 \text{ kg} < G \le 6 \text{ kg}$	3 points	1,5 s
G < 0.01 g or $G > 6$ kg	1 point	3 s

See Fig 64 for a graphical representation of the evaluation criterion.

Heavy parts:

- Needs for larger and stiffer equipment
- Risk connected with impact stress
- Light parts:
 - Lower handling and fitting time
 - Cheaper equipment

However, with too low a weigh there might be problems with adhesion forces!!!

Weight

ID	Component	Score
1	Metal cupola	9
2	Long screw	9
3	Plastic top	9
4	Base unit	9
5	Square nut	9
6	Screw	9
7	Spring	9
8	Washer	9
9	Nut	9
10	Plastic knob	9

Length . The length of a part is the longest side of an enclosing prism. This affects the choice of equipment.		Man. ref. time
$5 \text{ mm} \le L \le 50 \text{ mm}$	9 points	0 s
$2 \text{ mm} \le L \le 5 \text{ mm} \text{ or } 50 \text{ mm} \le L \le 200 \text{ mm}$	3 points	0,7 s
L < 2 mm or L > 200 mm	1 point	1,2 s

Length

Long parts:

 Needs for larger or special equipment Short parts:

• Difficulties in handling them

Length

ID	Component	Score
1	Metal cupola	9
2	Long screw	9
3	Plastic top	9
4	Base unit	9
5	Square nut	9
6	Screw	9
7	Spring	9
8	Washer	9
9	Nut	9
10	Plastic knob	9

Gripping is simplified if there are defined surfaces with determined geometry for use. Soft parts, e.g. plastics and rubber, are difficult to grip with a mechanical gripper since the parts can deform from the forces in the gripper.		Man. ref. time
Part has surfaces for gripping and can be gripped with the	9 points	0 s
same gripper as the previous part.		
Part has surfaces for gripping, but requires a new, unique	3 points	0 s
gripper that could not be used for the previous part. Part		
has surfaces for gripping and can use the same gripper as		
used earlier, but not for the previous part.		
Part has no surfaces for gripping or is flexible.	1 point	1 s

Gripping

- Grippers are less flexible than human hands: if a part can be assembled with a thumb and index finger it is suitable for automatic assembly
- Grippers that can be used for more parts are to be prefered: the single parts can be redesigned to be handled with as few grippers as possible
- Specific gripping surfaces are not always necessary, but once again can be beneficial for reducing the number of necessary grippers
- Gripping and feeding should use different reference surfaces

Gripping

- Grippe part c finger
- Grippe prefer handle
- Specification
 but of number
- Grippi surfac

hands: if a and index / s are to be gned to be

necessary, ducing the

it reference

Gripping principles

Gripping

ID	Component	Score	
1	Metal cupola	9	
2	Long screw	3	
3	Plastic top	9	
4	Base unit	3	3 = gripper exchange
5	Square nut	3	needed!
6	Screw	3	
7	Spring	3	
8	Washer	3	
9	Nut	3	
10	Plastic knob	3	Batch Principle!

Assembly motions (during insertion) will be faster, the simpler they are.		Man. ref. time
Assembly motion consists of a pressing motion with one	9 points	0 s
part being assembled to already assembled parts.		
Assembly motion consists of further motions than	3 points	0,5 s
pressing motion with one part.		
Assembly motion is an operation with multiple movable	1 point	0,8 s
parts that simultaneously are assembled to already		
assembled parts with other motions than pressing motion.		

Assembly Motion

Assembly Motion

ID	Component	Score
1	Metal cupola	9
2	Long screw	9
3	Plastic top	9
4	Base unit	9
5	Square nut	9
6	Screw	9
7	Spring	9
8	Washer	9
9	Nut	9
10	Plastic knob	9

Reachability for assembly operation should not be limited. All parts should be inserted in the same direction.		Man. ref. time
No restrictions or problems for reaching when fitting the	9 points	0 s
part.		
Reachability is limited. Other assembly direction than	3 points	4,5 s
previous part.		
Reachability is limited and requires special tools or	1 point	7 s
grippers to perform the assembly operation. Other		
assembly direction than previous part.		

Reachability

ID	Component	Score
1	Metal cupola	9
2	Long screw	9
3	Plastic top	9
4	Base unit	9
5	Square nut	3
6	Screw	9
7	Spring	9
8	Washer	3
9	Nut	1
10	Plastic knob	9

- Need to change position of the assembly to introduce them properly: the screw is on the opposite side!
- For the **nut** it is also necessary to use particular tools.

Insertion is simplified if there are chamfers or other guiding surfaces, e.g. an edge that can be used as a mechanical guide for the fitting operation, in the part.		Man. ref. time
Chamfers exist to simplify the insertion operation.	9 points	0 s
No chamfers, but other guiding surfaces simplifies the	3 points	0,2 s
insertion operation.		
No chamfers or other guiding surfaces.	1 point	0,5 s

Insertion

ID	Component	Score
1	Metal cupola	9
2	Long screw	3
3	Plastic top	9
4	Base unit	3
5	Square nut	3
6	Screw	1
7	Spring	3
8	Washer	1
9	Nut	1
10	Plastic knob	1

Tolerances for insertion of distance between a peg and whenever there is manipula other. Too small tolerances during insertion and the sys		Man. ref. time	
Tolerance $> 0,5 \text{ mm}$			0 s
$0,1 \text{ mm} \le \text{Tolerance} \le 0,5 \text{ mm}$			0,2 s
Tolerance $< 0,1 \text{ mm}$			0,4 s
1	3 9		
0 0,1 mm	0,5 mm	Tole	erance

Tolerances

			Tolerances decides
ID	Component	Score	needed!!!
1	Metal cupola	9	
2	Long screw	9	
3	Plastic top	1	Ø close to the Long screw
4	Base unit	9	One
5	Square nut	3	
6	Screw	3	
7	Spring	9	
8	Washer	3	
9	Nut	3	
10	Plastic knob	3	

Part level

Holding assembled parts is necessary if parts cannot keep orientation and position after assembly. Parts that are secured immediately, i.e. does not lose orientation or position if the assembly is turned up side down, ensures a more reliable assembly process.		Man. ref. time
Part is secured immediately at insertion.	9 points	0,s
Part keeps orientation and position, but is not secured.	3 points	0 s
Part must be held after insertion to keep orientation and position.	1 point	4 s

Holding assembled part

ID	Component	Score
1	Metal cupola	3
2	Long screw	3
3	Plastic top	9
4	Base unit	1
5	Square nut	1
6	Screw	3
7	Spring	1
8	Washer	3
9	Nut	1
10	Plastic knob	3

Part level

Fastening method. How is the analysed part itself fastened?		Man. ref. time
No fastening method at all (the part is placed on or in an	9 points	0 s
already assembled part), or only snap fits.		
Screwing- or pressing operations.	3 points	3 s
Adhesive fastening methods, welding, soldering,	1 point	8 s
riveting		

Fastening method

ID	Component	Score	
1	Metal cupola	9	
2	Long screw	9	
3	Plastic top	9	
4	Base unit	9	
5	Square nut	9	
6	Screw	3	Screwing
7	Spring	9	
8	Washer	9	
9	Nut	3	Screwing
10	Plastic knob	3	Pressing

Part level

Joining: Extra equipment or tools (e.g. press tools or screwdrivers) should not be needed to fit the part into place.		Man. ref. time
No extra equipment is needed.	9 points	0 s
Extra equipment or tools are needed to fit the part in	3 points	2 s
place and the extra operation is performed in assembly		
direction.		
Extra equipment or tools are needed to fit the part in	1 point	3 s
place and the extra operation is not performed in		
assembly direction.		

Joining

ID	Component	Score	
1	Metal cupola	9	
2	Long screw	9	
3	Plastic top	9	
4	Base unit	9	
5	Square nut	9	
6	Screw	3	Screwdriver
7	Spring	9	
8	Washer	9	
9	Nut	3	Spanner
10	Plastic knob	3	Spring Holder

Check/adjust is not needed if the product is designed according to "poka yoke", i.e. it is impossible to assemble the part in more than one way. Every extra operation for checking or adjusting is extra work and a symptom of a design that is not quite satisfactory.						
Unnecessary to check if part is in place.	9 points	0 s				
Necessary to check if part is in place or assembled	3 points	1 s				
correctly.						
Necessary to adjust or re-orient part.	1 point	2 s				

Check/adjust

ID	Component	Score	
1	Metal cupola	9	
2	Long screw	9	
3	Plastic top	9	
4	Base unit	9	
5	Square nut	3	Alignment
6	Screw	9	
7	Spring	9	
8	Washer	9	
9	Nut	9	
10	Plastic knob	9	

Summary: part level

						Pai	rt le	eve]			
Number or identical to List of all parts	Assemble G	al of der	Orienter	in alle D	Cerr Hoor	re d dia	Sil	and and		Asserti Gint	2014 I. TO 12	a deachair	Holor Inser	10 10 10 10 100 100 100 100 100 100 100	L'ase noied L	Ano ner		The two	SU	in
Metal cupola	1	9	3	1	9	9	3	3	9	9	9	9	9	9	9	3	9	9	9	130
Long screw	1	1	9	1	9	9	9	3	9	9	3	9	9	3	9	3	9	9	9	122
Plastic top	1	1	3	1	9	9	3	3	9	9	9	9	9	9	1	9	9	9	9	120
Base unit	1	9	3	1	9	1	1	1	9	9	3	9	9	3	9	1	9	9	9	104
Square nut	1	1	9	1	9	9	9	9	9	9	3	9	3	3	3	1	9	9	3	108
Screw	1	1	9	1	9	9	9	3	9	9	3	9	9	1	3	3	3	3	9	102
Spring	1	9	1	1	9	1	1	1	9	9	3	9	9	3	9	1	9	9	9	102
Washer	1	1	9	1	9	9	9	9	9	9	3	9	3	1	3	3	9	9	9	114
Nut	1	1	9	1	9	9	1	3	9	9	3	9	1	1	3	1	3	3	9	84
Plastic knob	1	1	3	1	9	9	9	3	9	9	3	9	9	1	3	3	3	3	9	93
Assembly Index	$=\frac{1}{M}$	axiı	num	T n po	otal int*1	sun num	n 1ber	of	part	$\frac{1}{s}$	$=\frac{1}{16}$.079 52*1	$\frac{1}{0} \approx$	67	%		T S	OTA SUM	L :	1079

Redesign: first iteration

ID	Component
1	Base unit
2	Metal cupola
3	Rivet
4	Square nut
5	Screw

Summary of the redesign evaluation

	PRODUCT LEVEL											
	Reduce number of parts	Unique parts	Base object	Design base object	Assembly directions	Parallel operations	Chain of tolerances	SUM				
Object/Product/Module	9	1	9	3	1	3	3	29				

162*5

Maximum point*number of parts

SUM:

Further improvements...

- Only the three theoretically necessary parts have been included
- The connection with the bicycle is simplified

References

- Boothroyd, G., P. Dewhurst, et al. (2010). <u>Product Design for Manufacture</u> and Assembly, CRC.
- Eskilander, S. (2001). <u>Design For</u> <u>Automatic Assembly--A Method for</u> <u>Product Design: DFA2</u>.