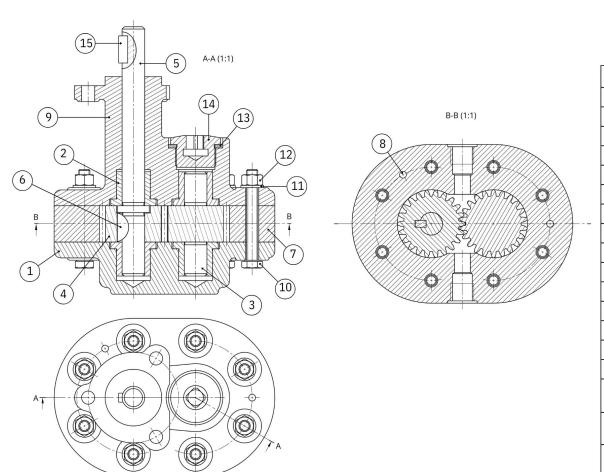


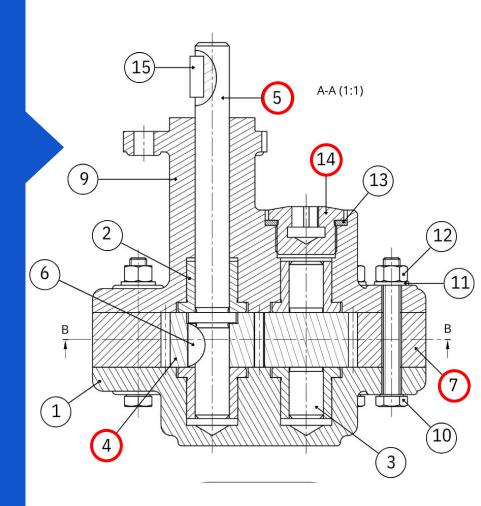
POMPA A INGRANAGGI Tecnologia Meccanica A.A. 2024/2025


Iacopini Duccio Frandi Matilde

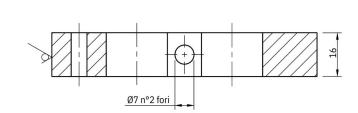
Docenti relatori:

Lanzetta Michele Spigliati Francesco

Il Complessivo

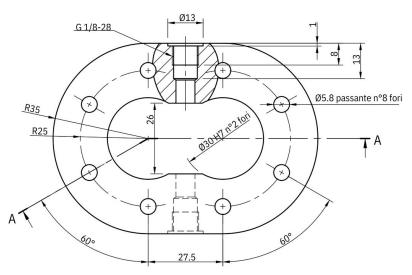

POS.	DENOMINAZIONE	N° PEZZI	MATERIALE			
15	Linguetta A - 4x4x12 UNI 6604-69	1	C20 UNI 5332-64			
14	Тарро	1	G-CuZn 40 UNI 5033			
13	Guarnizione	1	Gomma			
12	Dado M5 UNI 5587-65-8G	8				
11	Rosetta A - 5.3 UNI 1751	8	Fe 34 UNI 5334-64			
10	Vite M5x40 UNI 5737-65-8G	8				
9	Corpo Superiore	1	G-AlSi5 CuMg UNI 3600			
8	Spina 3x28 UNI 1707	2	Fe50 UNI 5334-64			
7	Corpo Intermedio	1	G-AlSi5 CuMg UNI 3600			
6	Linguetta 3x5 UNI 6606-69	1	C20 UNI 5332-64			
5	Alberino	1	C50 UNI 5332-64			
4	Ingranaggio conduttore	1	//			
3	Ingranaggio condotto	1	//			
2	Bussola	4	BSPB 30 UNI 1701			
1	Corpo Inferiore	1	G-AlSi5 CuMg UNI 3600			
UNIVERSITÀ DEGLI STUDI DI PISA Facoltà di Ingegneria						
	Complessivo : POMPA A INGRANAGGI	Foglio: 1/1	Scala : 1:1			
	Disegnatori:					

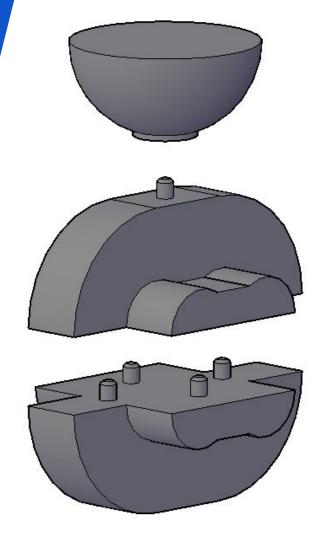
Iacopini Duccio, Frandi Matilde


Lo scopo del progetto

Produzione di pochi esemplari (fino a 100 pezzi), dunque sarà necessario ottimizzare i costi, soprattutto nella scelta dei metodi produttivi.

- Corpo Intermedio (Particolare 7) per Fusione, con successiva Foratura.
- Tappo (Particolare 14) per Stampa 3D.
- Alberino (Particolare 5) per **Tornitura** e **Fresatura**.
- Saldatura di due anelli di presa per il Corpo Intermedio
- **Estrusione** dell'Ingranaggio Conduttore (Particolare 4)


Corpo Intermedio - Particolare 7


A-A (1:1)

Tolleranze generali secondo ISO 2768-mK Rugosità generale: Ra 3.2 µm

UNIVERSITÀ DI PISA Scuola di Ingegneria							
Particolare	Particolare n°7	Foglio 1:1					
Complessivo	Pompa a i	Scala 1:1					
Disegnatori	Iacopin Frandi						

CICLO DI FUSIONE

- Lega di Alluminio e Silicio AlSi5-CuMg EN 45300
- Lega molto fluida, ottima per colate
- Limitato coefficiente di dilatazione termica

COMPOSIZIONE CHIMICA %

	ELEMENTI													
LEGA		Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Pb	Sn	Ti	Impurezze singole	lmpurezze globali
EN AB 45300	Min	4,5	0	1,0	0	0,40	0	0	0	0	0	0	0	0
EN 1676:2020	Max	5,5	0,55	1,5	0,55	0,65	0,05	0,25	0,15	0,1*	0,05	0,20	0,05	0,15
EN AC 45300 EN 1706:2020	Min	4,5	0	1,0	0	0,35	0	0	0	0	0	0	0	0
	Max	5,5	0,65	1,5	0,55	0,65	0,05	0,25	0,15	0,1*	0,05	0,25	0,05	0,15

*Limite interno Raffmetal (le norme Europee riportano Pb = 0,15% max)

PROPRIETÀ MECCANICHE roprietà meccaniche rilevate su provette colate a parte alla temperatura ambiente di +20°C)

		Rm	Rp02	A	НВ	R Fatica* Restistenza a Fatica EN 1706:2020	
PROCESSO DI COLATA	STATO FISICO DI	Carico unitario di rottura	Carico al limite di snervamento	Allungamento	Durezza Brinell		
(condizione)	COLATA	EN 1706:2020	EN 1706:2020	EN 1706:2020	EN 1706:2020		
		MPa	MPa	%	нвш	MPa	
IN SABBIA	T4	170	120	2	80	70 - 100	
IN SABBIA	Т6	230	200	<1	100	70 - 100	
IN CONCHIGLIA	T4	230	140	3	85	70 - 100	
IN CONCHIGLIA	Т6	280	210	<1	100	70 - 100	

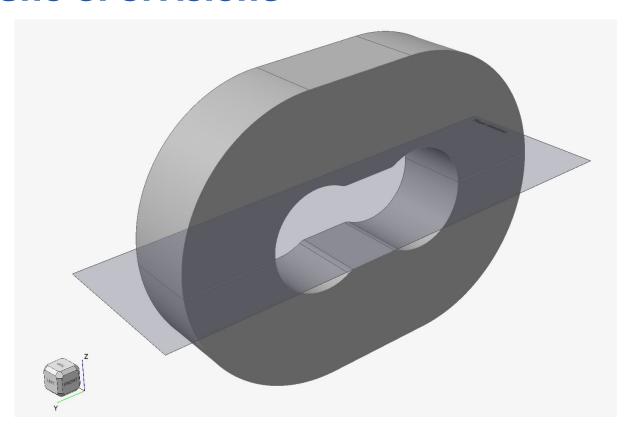
"Valori per test in condizioni di flessione rotante fino a 10' cicli (curva di Wöhler)

PROPRIETÀ FISICHE

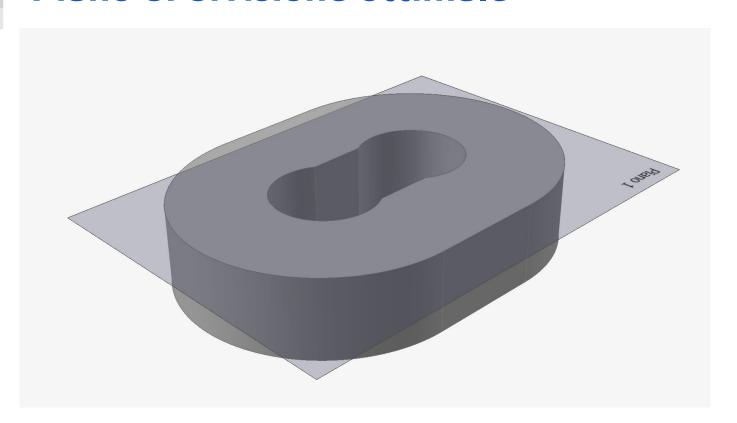
(Le seguenti proprietà sono influenzate dalla variazione di composizione chimica all'interno della specifica, dalla struttura metallurgica, dall'integrità del getto e dalle condizioni di colata, pertanto i valoti riportati sono inidicativi

PESO SPECIFICO	2,67 Kg/dm ³	CONDUTTIV
CALORE SPECIFICO a 100 °C)	0,92 J/gK	CONDUTTIV
MODULO ELASTICO	72 GPa	DILATAZION (da 20° C a

CONDUTTIVITÀ ELETTRICA	EN 1706:2020	19 - 23 MS/m
CONDUTTIVITÀ TERMICA	EN 1706:2020	140 - 150 W/(m K)
DILATAZIONE TERMICA (da 20° C a 100° C)	EN 1706:2020	22-10 ⁻⁶ /K


CARATTERISTICHE TECNOLOGICHE

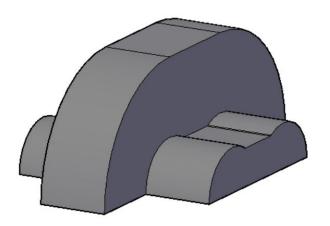
С
В
С
В
В
D

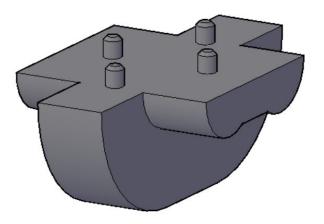

mativa EN 1706:2020)	
ATTITUDINE ALL'ANODIZZAZIONE DECORATIVA	D
SALDABILITÀ	С
LUCIDABILITÀ	В
RESISTENZA MECCANICA A TEMPERATURA AMBIENTE	В
RESISTENZA MECCANICA A CALDO (200°C)	В
DUTTILITÀ	В

A: OTTIMA, B: BUONA, C: MEDIA, D: SUFFICIENTE, E: SCARSA, F: NON SUFFICIENTE

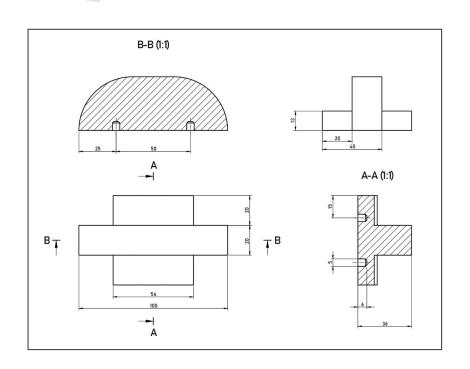
Piano di divisione

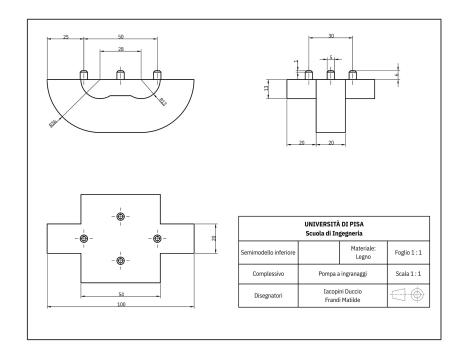
Piano di divisione ottimale

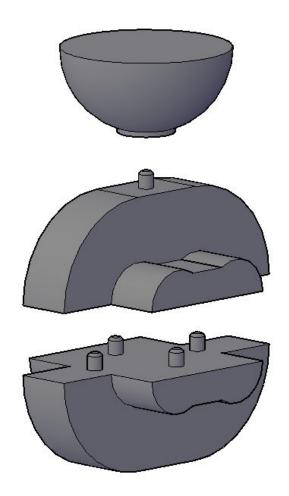

Modello iniziale


Materiale: Legno Verniciato

- Scelte progettuali:
- Sovrametalli **2 mm**
- Angoli di sformo 1°
- Coefficiente di ritiro **1,6%**


• Sede per anima

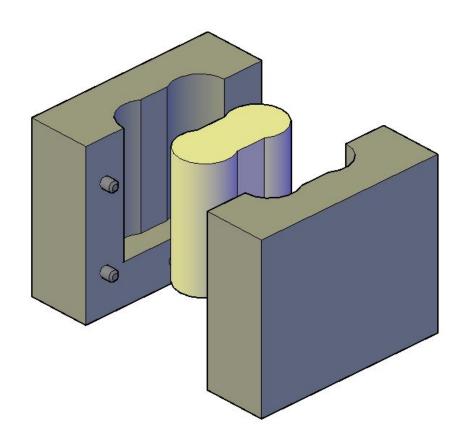

• Spine per l'allineamento dei semi modelli

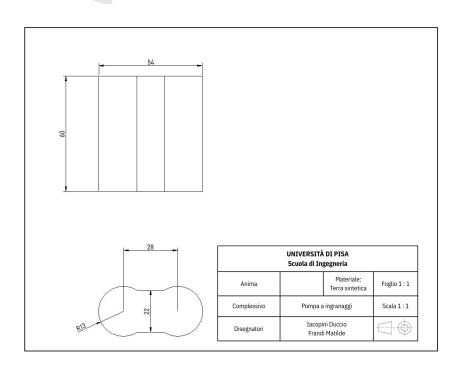


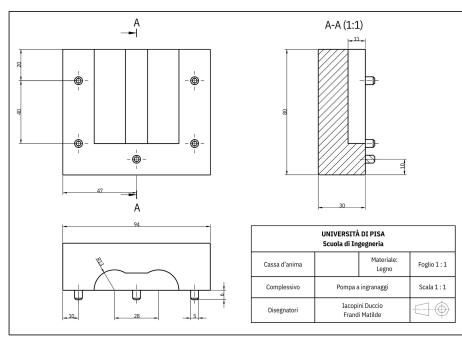
Modello completo

- Materiale: Legno Verniciato
- Scelte progettuali:
- Sovrametalli **2 mm**
- Angoli di sformo 1°
- Coefficiente di ritiro 1,6%

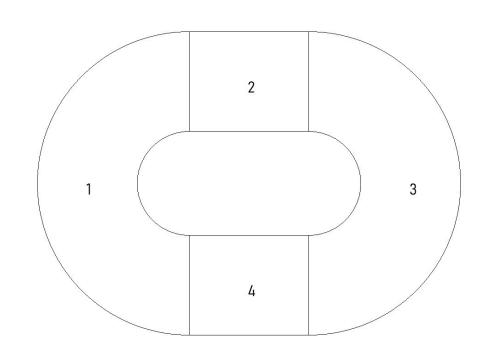
- Sede per **anima**
- Spine per l'allineamento dei semi modelli

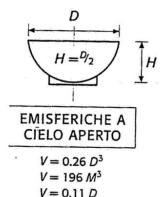

Materozza


Anima


• Materiale: Terra Sintetica

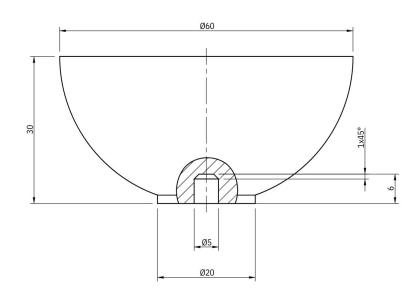
• Formatura: in cassa d'anima


Anima e Cassa d'anima: Disegno Tecnico



Studio della solidificazione: Moduli di Raffreddamento

- Formula: M=V/S
- Valori:
- M1 = M3 = 3,65 mm
- M2 = M4 = 5,35 mm
- M2/M1≈1,5

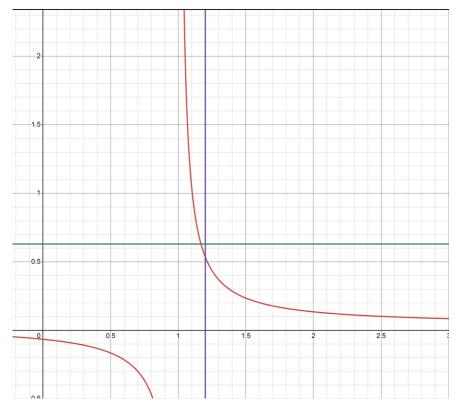

Dimensionamento materozza

• Tipologia: Emisferica a cielo aperto

Modulo: Mm=1.2*M2 =6.4 mm

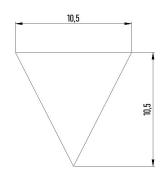
 Posizionamento: in corrispondenza volume 2

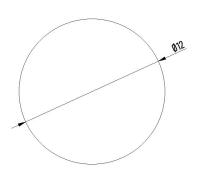
Diagramma di Caine

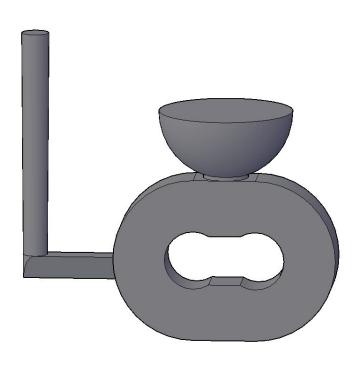

$$y = 0.035 + \frac{0.1}{x-1}$$

- X = Mm/Mp = 1,25
- Y = Vm/Vp = 0,63
- Raggio di influenza:

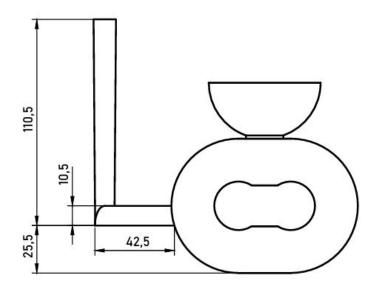
$$R = k*S = 6*20 = 120mm$$

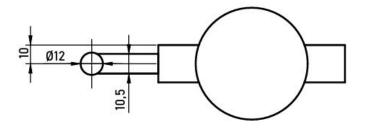

I nostri valori sono:


- Mm=1.2*Mp=6.4 mm
- Mp=5.35 mm
- Vm=196*Mm^3=58 950 mm3
- Vp=93 221.2 mm3



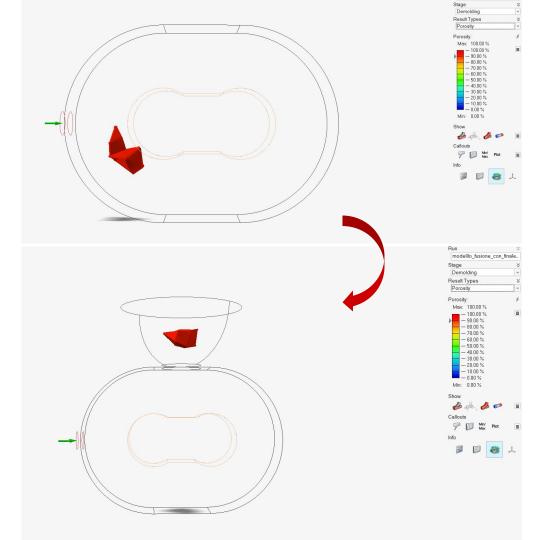
Sistema di colata

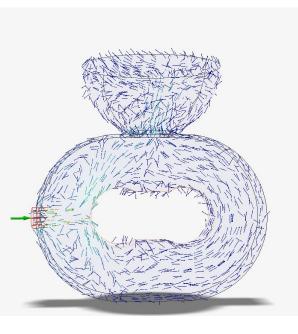

- Tempo di colata T = 2 s
- Velocità della vena fluida v = 0,14 m/s
- Sezione dell'attacco di colata
- Sezione S a,c = 52 mm^2
- Forma: triangolo isoscele b = h = 10,5 mm
- Sezione colata del canale
- Sezione S c,c = 104 mm^2
- Forma: circolare Rc,c = 6 mm

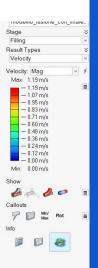


Sistema di colata: Schema

Le Staffe


- Staffa superiore: 250x315x100
- Staffa inferiore: 250x315x50


Serie rettangolare con rapporto b/a = 1,25


a,	ь						H			A MARKE			and the same of
250	315	50	63	80	100	125	160	200	_		-		
280	355	50	63	80	100	125	160	200	250				
315	400	50	63	80	100	125	160	200	:250	300			
355	450		-	80	100	125	160	200	250	300			
400	500				100	125	160	200	250	300	355		
450	560				100	125	160	200	250	300	355		
500	630		-		100	125	160	200	250	300	355	400	
560	710				100	125	160	200	250	300	355	400	
630	800 .				100	125	160	200	250	300	355	400	
710	900			_		125	160	200	250	300	355	400	Enn
800	1000					125	160	200	250	300	355	400	500
900	1100				_		160	200	250	300	355	400	500
1000	1300			-				200	250	300	355	400	500
1100	1400							200	250	300	355	400	
1200	1500								250	300	355		500
1300	1600								250	300	355	400	500
1400	1700								230	300		400	500
1500	1800							-			355	400	500
	-			•						300	355	400	500

Simulazione di colata: Analisi porosità

Notiamo come nella simulazione in alto, quella senza materozza, vi siano problemi di porosità nel pezzo, al contrario della simulazione in basso, in cui il modello è provvisto di materozza.

Simulazione di colata: Analisi del moto del fluido

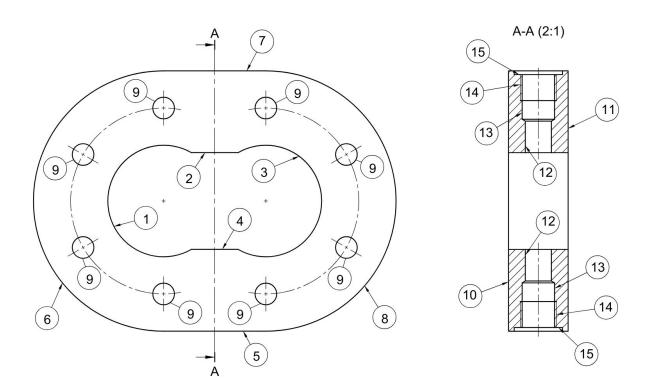
Abbiamo verificato che il moto fosse LAMINARE e non TURBOLENTO

Analisi dei tempi e dei Costi

Tempo impiegato per la formatura in terra di circa 20 minuti

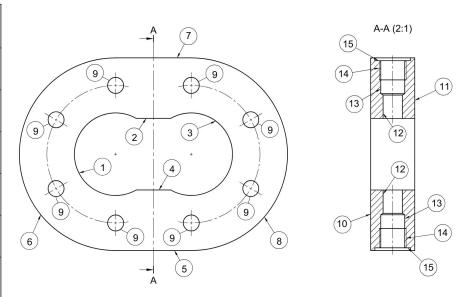
• Costo alluminio circa 0,9 €

• Costo terra da fonderia 7,4 €


• Costo manodopera 8,25 €

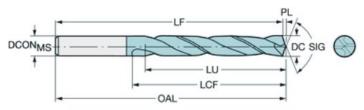
• Costo totale 16,55 €

ASPORTAZIONE DI TRUCIOLO: FORATURA

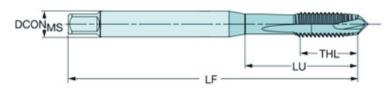

Riferimento superfici del corpo intermedio

Ordine delle fasi

Superficie	Lavorazione
1, 2, 3 e 4	Fresatura (CNC) - Contornatura
10 e 11	Fresatura - Spianatura
5, 6, 7 e 8	Senza lavorazioni
9, 12 e 13	Foratura e Allargatura
14	Maschiatura
15	Svasatura cilindrica


Utensili per foratura

Punta da centri GÜHRING in HSS
 D nominale Φ1.6 mm
 D codolo Φ4 mm


• Punta elicoidale Φ5.8, Φ7, Φ8.8 in HSS della Sandvik Coromant

• Maschio G 1/8 Sandvik

Macchine utensili

SEGA A NASTRO KNUTH VB 300 A

AREA UTILE DI LAVORO

Dimensioni tavola: 500 mm x 400 mm x 890 mm

CAPACITÀ DI TAGLIO

Altezza x sbalzo: 185 mm x 310 mm

Velocità di taglio: 10 - 180 m/min

POTENZA AZIONAMENTO

0.55 KW

TRAPANO A COLONNA KNUTH KB 20 SV

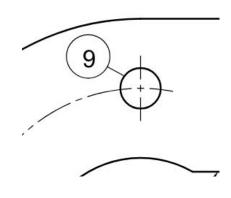
AREA UTILE DI LAVORO

Capacità di foratura: Φ20 mm

Corsa canotto: 135 mm

VELOCITÀ DISPONIBILI

205 - 2045 giri/min

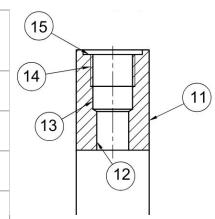

POTENZA DI AZIONAMENTO

1.1 KW

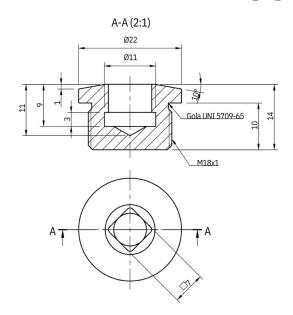
Parametri di taglio per foratura

a. Lavorazione superficie 9.

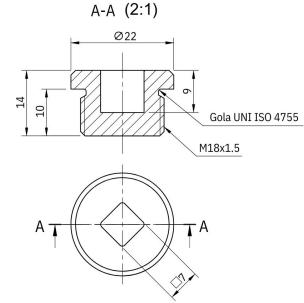
	Centratura	Foratura Φ5.8 mm
Vt	10 m/min	25 m/min
n	1990 giri/min	1372 giri/min
а	0.03 mm/giro	0,18 mm/giro
Р		0.006 KW



Parametri di taglio per foratura


b. Lavorazione superfici 12, 13, 14 e 15

	Centratura	Foratura Φ7mm (sup. 12)	Allargatura Φ8.8 (sup. 13)	Svasatura cil. Ф13 mm (sup.15)
Vt	10 m/min	40 m/min	40 m/min	40 m/min
n	1990 giri/min	1819 giri/min	1447 giri/min	735 giri/min
а	0.03 mm/giro	0.18 mm/giro	0.5 mm/giro	0.5 mm/giro
Р		0.012 Kw		

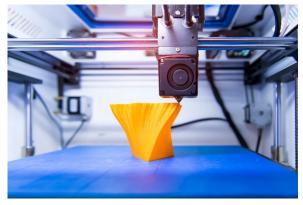

La filettatura G 1/2 è effettuata a mano, quindi è necessario l'uso di lubrificante

Tappo - Particolare 14

Smussi non quotati: 1x45° Raccordi non quotati: R 0.75

UNIVERSITÀ DI PISA Scuola di Ingegneria				
Particolare	Particolare n°14	Materiale: G-CuZn40	Foglio 1 : 1	
Complessivo	Pompa a ingranaggi		Scala 2 : 1	
Disegnatori	Iacopini Duccio Frandi Matilde			

Smussi non quotati: 1x45° Raccordi non quotati: R 0.75


UNIVERSITÀ DI PISA Scuola di Ingegneria			
Particolare	Particolare n°14	Materiale: PETG	Foglio 1 : 1
Complessivo	Pompa a ingranaggi		Scala 2 : 1
Disegnatori	Iacopini Duccio Frandi Matilde		

Scelta della tecnologia

Scelta la tecnologia **FDM** (Fused Deposition Modeling) e non la MSLA (Masked StereoLithography Apparatus)

Ragioni:

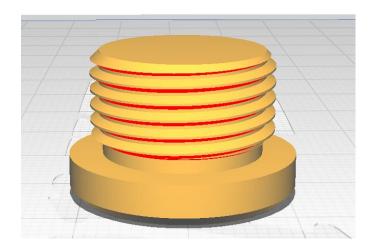
- Maggiore facilità di stampa.
- Versatilità delle macchine per FDM e maggiore reperibilità di parti di ricambio.
- Costi contenuti e libertà geometrica.
- Possibilità di iterazione rapida su prototipi per ottimizzare la geometria.

Scelte progettuali

• La Macchina: Mavis della Kentstrapper

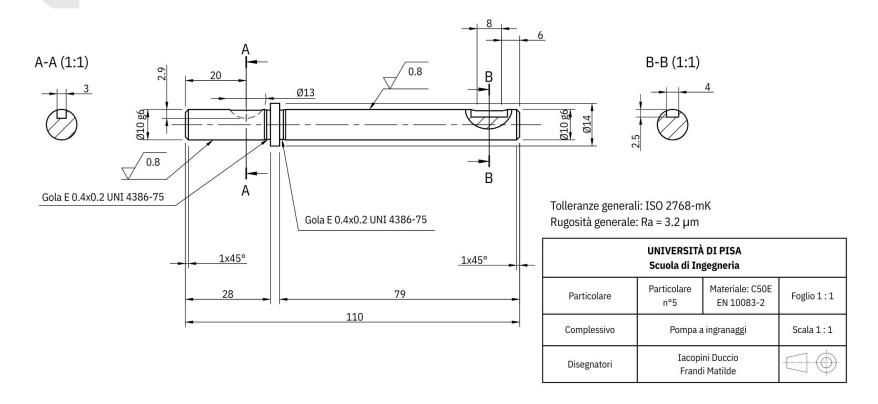
Materiale: PETG

Ragioni Scelta del materiale:

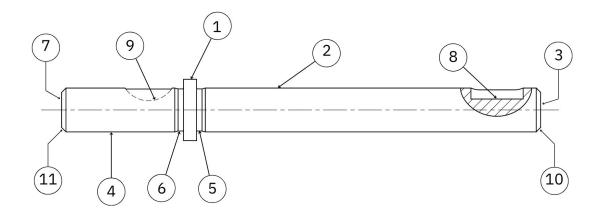

- facilità di stampa
- resistenza usura meccanica
- resistenza chimica
- buona tenuta tra layer
- economico

Slicing e Parametri di stampa

Software: Cura

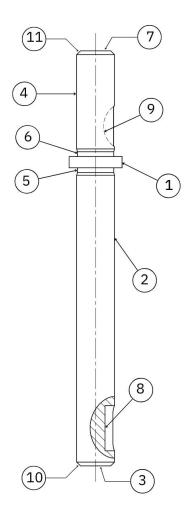

Altezza Layer	0,12 mm	Velocità	ugello: 50 mm/s ai bordi: 25 mm/s
Spessore Pareti	1,6 mm, 4 filamenti adiacenti	V. ventola raffreddamento	40%
Riempimento	20%	Supporti	solo per foro quadrato interno
Temperatura di Stampa	ugello: 240 °C ai bordi: 70 °C	Piatto di adesione	no

Analisi dei tempi e dei Costi

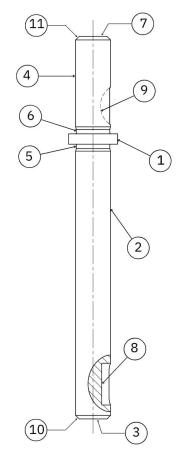

Tempo attivo di stampa	45 min
Preparazione e pulizia stampante	10 min
Pulizia pezzo finito	5 min
Tempo totale di esecuzione (1 pezzo)	60 min

	Prezzo medio	Quantità	Costo finale
Materiale: PETG	25 [€/Kg]	3 [g]	0.075 [€]
Energia elettrica	0,166 [€/KWh]	500 [W] x 45 [min]	0.062 [€]
Tempi passivi	25 [€/h]	15 min	6.250 [€]
Costo totale (+5%)	-	-	6.70 [€]

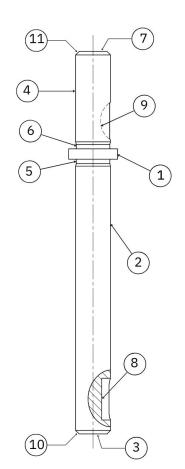
Alberino - Particolare 5



Riferimento Superfici


Ordine delle fasi

Superficie	Lavorazioni
3 e 7	Tornitura - Troncatura
1, 2 e 4	Tornitura - Cilindratura
5 e 6	Tornitura - Esecuzione di gole
10 e 11	Tornitura - Esecuzione smussi
8 e 9	Fresatura


Ordine delle fasi

Fasi	Lavorazioni
10 Taglio grezzo	Troncatura con smerigliatrice
20 TORNITURA	Troncatura e centratura sup. 3 e 7
	Sgrossatura sup. 1
	Sgrossatura (2), Esecuzione gola (5) e smusso (10)
	Sgrossatura (4), Finitura (1), Esecuzione gola (6) e smusso (11)
30 FRESATURA	Esecuzione cava 8 e 9
40 RETTIFICA	Rettifica sup. 2 e 4

Ordine delle fasi (ottimale)

Fasi	Lavorazioni
10 Taglio grezzo	Troncatura con smerigliatrice
20 TORNITURA	Troncatura e centratura (sup. 3) Sgrossatura (1) e (2), Esecuzione smusso (10) e gola (5)
	Troncatura e centratura (sup. 7) Sgrossatura (4), Esecuzione smusso (11), Finitura (1), Esecuzione gola (6)
30 FRESATURA	Esecuzione cava 8 e 9
40 RETTIFICA	Rettifica sup. 2 e 4

Macchine utensili: Tornio

TORNIO PARALLELO KNUTH BASIC 170 SUPER PRO

AREA UTILE DI LAVORO:

Distanza tra punte: 1000 mm Φ massimo di tornitura: 354 mm

MANDRINO PRINCIPALE:

70 - 2000 giri/min

AVANZAMENTO

Asse X: 0.0291 - 2.035 mm/giro Asse Z: 0.0406 - 2.842 mm/giro

POTENZA DI AZIONAMENTO:

1.5 KW

Macchine utensili: Fresatrice

FRESATRICE UNIVERSALE KNUTH VHF 1.1

AREA UTILE DI LAVORO:

Dimensione tavola: 1000 x 240 mm

TESTA DI FRESATURA VERTICALE:

Velocità mandrino: 100 - 2000 giri/min

MANDRINO PER FRESATURA ORIZZONTALE

Velocità mandrino: 60 - 1350 giri/min

VELOCITÀ AVANZAMENTO:

Asse X, Y, Z: 18 - 627 mm/min

POTENZA AZIONAMENTO:

Motore di azionamento verticale: 1.5 KW Motore di azionamento orizzontale: 2.2 KW

Macchine utensili: Rettificatrice

RETTIFICATRICE CILINDRICA KNUTH RSM 800

AREA UTILE DI LAVORO:

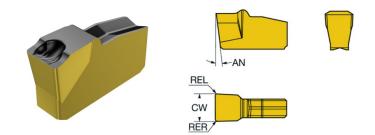
Distanza tra punte: 640 cm Φ massimo: 100 mm

VELOCITÀ DISPONIBILI:

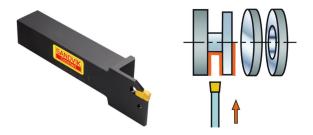
Testa portamandrino: 25 - 380 giri/min Testa portamola: fino a 16000 giri/min

AVANZAMENTO:

0.1 - 4 m/min

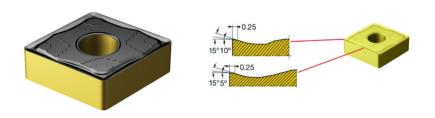

POTENZA DI AZIONAMENTO:

5.6 KVA

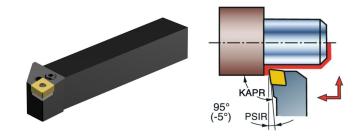

Scelta utensili: Troncatore

• INSERTO: N151.2-300-30-5G 4225

Larghezza di taglio (CW) = 3 mm Raggio di raccordo taglienti (RER, REL) = 0.3 mm Angolo di spoglia inferiore (AN) = 7°

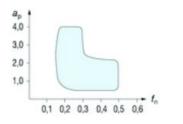

STELO PORTA UTENSILE: L151.21-2525-30

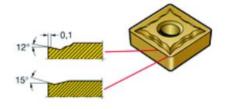
Scelta utensili: Sgrossatore


INSERTO: CNMG 12 04 08 - PMC 4425

Forma inserto: Rhombic 80 Lunghezza tagliente (LE) = 12.1 mm Raggio di punta (RE) = 0.7938 mm

STELO PORTA UTENSILE: PCLNR 2525M 12


Angolo tagliente principale (KAPR_1) = 95° Angolo di spoglia superiore (GAMO) = -6°

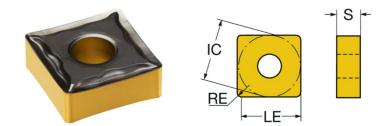


Scelta utensili: Finitore

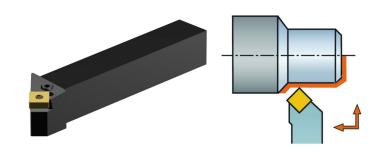
INSERTO: CNMG 12 04 08 - MF 4425

Forma inserto: Rhombic 80 Lunghezza tagliente (LE) = 12.1 mm Raggio di punta (RE) = 0.7938 mm

 STELO PORTA UTENSILE: (lo stesso della sgrossatura) PCLNR 2525M 12



Scelta utensili: Smussi 1x45° (opzionale)


INSERTO: SNMG 12 04 08 - MF 4425

Forma inserto: Square Lunghezza tagliente (LE) = 11.9 mm Raggio di punta (RE) = 0.7938 mm

• STELO PORTA UTENSILE: **PSSNR 2525M 12**

Angolo tagliente principale (KAPR_1) = 45° Angolo di spoglia superiore (GAMO) = -8°

Scelta utensili: Frese

FRESA PER CAVA LINGUETTA DI TIPO A: 2P342-0318-PA P2BM

Diametro di taglio (DC) = 3.175 mm Angolo tagliente dell'utensile (KAPR_1) = 90° Profondità di taglio massima (APMX) = 7.938 mm

FRESA PER CAVA LINGUETTA AMERICANA

Tipo di articolo: punta per fresa a T

Materiale: acciaio rapido

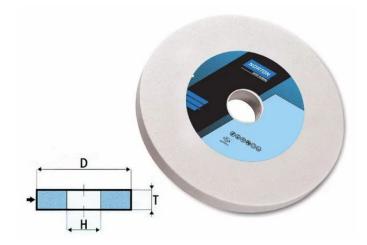
Forma dell'impugnatura: gambo dritto

Larghezza della lama: 3 mm

Diametro del cerchio esterno: Φ13 mm

Diametro del gambo: Φ10 mm

Marca: Leroy Merlin


Scelta utensili: Mola

MOLA PER RETTIFICA IN TONDO ESTERNA IN CERAMICA: 38A46-NVS

Diametro esterno: D = 200 mm

Diametro interno: H = 32 mm

Spessore mola: T = 25 mm

Fogli di CICLO (1/2)

UNIVERSITÀ DI PISA Scuola di Ingegneria				AZIONE ELEMENTO: - Pompa a ingranaggi		ST Iacopini Duc	FOGLIO 1/2	
DESIGNAZIONE SUPERFICI	N.	FASI VALUE SCHIZZO DI LAVORAZIONE VALUE VA		passivi totale	:	NOTE		
	10	Troncatura grossolana				·		
		Tornitura				8'	SP3 ed SP7	
		a. Troncatura ③ Centratura ③		(1) (7)	ino e	9' 2' 2.5'	SP3	
(4) (9)		b. Troncatura 7 Centratura 7	5 KW)	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ıl mandr		SP7	oto
		c. Sgrossatura 1	٦̈́		ıte a		SP1, SR3, SR7	nza mer
5	20	d. Esecuzione gola 5 Esecuzione smusso 10	Tornio parallelo (1.5 KW)	2	Piattaforma autocentrante al mandrino contropunta rotante Punta e contropunta		SR1, SR3	SP: Superficie di Partenza SR: Superficie di Riferimento
2		e. Sgrossatura 4 Finitura 1 Esecuzione gola 6 Esecuzione smusso 11		10 3	Piattaforma contropunta Punta e cor		SR2, SR7	SP: Super SR: Super
		Fresatura						
10 3	30	Esecuzione cava 8 linguetta A a. Esecuzione cava 9 linguetta americana	Fresatrice (2.2 KW)	2 8	Blocchetto a V Morsa	22" 22'	SR2	SR2 appoggiata al blocchetto a V e vincolata con la morsa

Fogli di CICLO (2/2)

UNIVERSITÀ DI PISA Scuola di Ingegneria				RAZIONE ELEMENTO: - Pompa a ingranaggi		V.11 .181.0-54.18	DENTI: o - Frandi Matilde	FOGLIO 2/2
DESIGNAZIONE SUPERFICI	N.	. ISAR		SCHIZZO DI LAVORAZIONE	ATTREZZATURE	Tempo di preparazione Tempi passivi Tempi totale unitario	SUPERFICI DI RIFERIMENTO	NOTE
		Rettifica						
	40	a. Rettifica in tondo 2	e (5.6 KW)	4 2	utocentrante contropunta	6.6' 6.6'	SR4, SR3	SR4 al mandrino, SR3 in contropunta
		b. Rettifica in tondo 4	Rettificatrice (5.6 KW)	3	Piattaforma autocentrante al mandrino e contropunta		SR2, SR7	SR2 al mandrino, SR7 in contropunta
Vedere foglio 1								

Fogli di FASE (%)

		UNIVERSITÀ DI PISA Scuola di ingegneria	FASE DI LAVORAZIONE: Particolare n°5 - Pompa a ingranaggi						STUDENTI: lacopini Duccio, Frandi Matilde			
	terie ime	Materiale	: C5	50E EN10083-2, Ca r	ratteristiche: R _m 6	50 N/mm²		P _m [KW]	P _{ass} [KW]	V _c [m/min]	n [giri/ min]	
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]	
			1	Ф16 in piattaforma autocentrante, troncare sup. (3) a 130 mm dal bordo	Portainserto: L151.21-2525-30 Inserto: N352.2-300-30-5G- 4225	Piattaforma autocentrante al mandrino	Calibro corsoio	0.85	0.163	30	0.1	
	a.		2	Centrare Φ16 la sup. (3)	Punta a centrare	Portapunte in controtesta		0.85	0.1	25	500	
20	b.		1	Φ16 in piattaforma autocentrante, troncare a 110 mm dal bordo, sup. (7)	Come sopra	Come sopra	Come sopra					
	D.		2	Centrare Φ16, sup.(7)	Come sopra	Come sopra	Come sopra					
	c.		1	Bloccare il pezzo con punta e contropunta, eseguire sgrossatura della sup. (1) da Φ16 a Φ14.2	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 PMC 4425	Punta e contropunta	Calibro corsoio	0.85	0.181	50	995	

Fogli di FASE (%)

	9	UNIVERSITÀ DI PISA Scuola di ingegneria		Parti	FASE DI LAVORA colare n°5 - Pompa	S lacopir	Foglio 2/5				
	terie ime	Materiale	: C5	50E EN10083-2, Car	atteristiche: R _m 6	50 N/mm²		P _m [KW]	P _{ass} [KW]	V _c [m/min]	n [giri/ min]
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]
			1	Bloccare il pezzo con la piattaforma autocentrante a 30 mm dal bordo. Sgrossare (2) da Ф14.2 a Ф10.2	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 PMC 4425	Piattaforma autocentrante al mandrino Contropunta in controtesta	Calibro corsoio	1.5	0.344	50 / 1	1000/
20	d.		2	Con l'utensile troncatore, creare la gola profonda 0.2 mm a 79 mm dal bordo.	Portainserto: L151.21-2525-30 Inserto: N352.2-300-30-5G- 4225	Come sopra	Calibro corsoio	1.5	0.164	30 / 1	940
			3	Con l'utensile con inserto a 45°, creare uno smusso profondo 1 mm al bordo	Portainsero: PSSNR 2525M 12 Inserto: SNMG 12 04 08 - MF 4425	Come sopra	Calibro corsoio	1.5	- /	70 / 1	1400

Fogli di FASE (%)

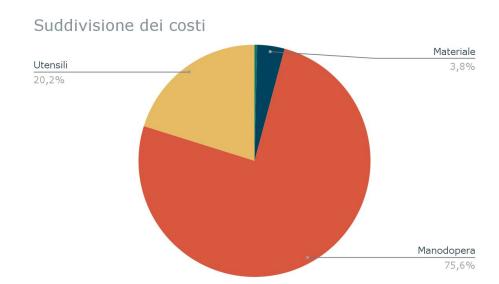
	i i	UNIVERSITÀ DI PISA Scuola di ingegneria		Parti	FASE DI LAVORA colare n°5 - Pompa	S lacopir	Foglio 3/5				
	terie ime	Materiale	: C5	50E EN10083-2, Car	atteristiche: R _m 6	P _m [KW]	P _{ass} [KW]	V _c [m/min]	n [giri/ min]		
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]
			1	Bloccare il pezzo con la piattaforma autocentrante a 30 mm dal bordo. Sgrossare (4) da Ф14.2 a Ф10.2	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 PMC 4425	Piattaforma autocentrante al mandrino Contropunta in controtesta	Calibro corsoio	0.85	0.344	50	0.2
20	e.		2	Cambiare inserto con quello finitore, dunque finire sup. (1)	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 MF 4425	Come sopra	Calibro corsoio	1.5	0.04	70 1	1570
			3	Con l'utensile troncatore, creare la gola profonda 0.2 mm a 28 mm dal bordo.	Portainserto: L151.21-2525-30 Inserto: N352.2-300-30-5G- 4225	Come sopra	Calibro corsoio	0.85	0.164	30 /	940
			4	Con l'utensile con inserto a 45° profondo 1 mm	Portainsero: PSSNR 2525M 12 Inserto: SNMG 12 04 08 - MF 4425	Come sopra	Calibro corsoio	0.85	- /	70 1	0.1

Fogli di FASE (4/5)

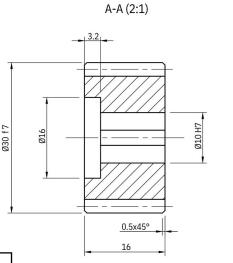
		UNIVERSITÀ DI PISA Scuola di ingegneria		FASE DI LAVORAZIONE: Particolare n°5 - Pompa a ingranaggi					STUDENTI: lacopini Duccio, Frandi Matilde			
	Materiale: C50E EN10083-2, Caratteristiche: R _m 650 N/mm ²								P _{ass} [KW]	V _c [m/min]	n [giri/ min]	
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	V _a [mm/ min]	
30	a.		1	Appoggiare il pezzo sul blocco a V e bloccare il pezzo nella morsa, quindi eseguire la cava, sup. (8) di profondità 2.5 mm dalla superficie. I parametri di taglio sono gli stessi sia per la prima sgrossatura che per le passate di finitura laterali, da eseguire in opposizione		Blocchetto a V Morsa	Calibro corsoio	0.85	0.005	12 1	294 / 70	
30	b.		1	Nella stessa configurazione, utilizzare la fresa a T con Φ13 ed eseguire la cava, sup. (9), di profondità 2.9 mm	Fresa a T Φ13	Come sopra	Calibro corsoio	0.85	0.060	12 / 3	1222/	

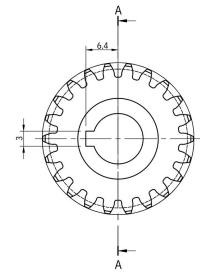
Fogli di FASE (5/5)

		UNIVERSITÀ DI PISA Scuola di ingegneria		Parti	FASE DI LAVORA colare n°5 - Pompa	S lacopir	Foglio 5/5				
	terie ime	Materiale	ale: C50E EN10083-2, Caratteristiche : R _m 650 N/mm²						P _{ass} [KW]	V _c [m/s]	n _{mola} [giri/ min]
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]
			1	Bloccare il pezzo con punta e contropunta alla rettificatrice cilindrica, dunque rettificare la superficie (2) a Ra=0.8	Mola in ceramica 38A46-NVS	Blocchetto a V Morsa	Calibro passa- non-passa Ф10g6 Rugosimetro	5.6	0.1	35 1	0.02
40			1	Nella stessa configurazione, utilizzare la stessa mola per rettificare la superficie (4)	Come sopra	Come sopra	Coma sopra	5.6	0.1	35 /	3340/0.02


Analisi dei tempi

Fase	Tempi attivi [min]	Tempi passivi [min]	Tempo tot. di FASE [min]
Tornitura	2	17	19
Fresatura	0.3	14	14.3
Rettifica	3.66	8.1	11.76


Dunque il tempo totale di ciclo è di 45 min

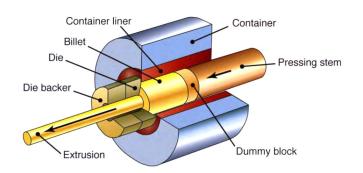


VOCE	COSTO [€]
Macchine	0.089
Energia elettrica	0.001
Materiale	0.947
Manodopera	18.75
Utensili	5.000
тот.	24.8 ≅ 25

Ingranaggio conduttore - Particolare 4

m	1.25			
Z	22			
d	27.5			
ha	1.25			
hf	1.562			
h	2.812			
da	30			
df	24.376			
α	20°			

UNIVERSITÀ DI PISA Scuola di Ingegneria								
Particolare	Particolare n°4	Foglio 1 : 1						
Complessivo	Pompa a i	Pompa a ingranaggi						
Disegnatori	Iacopin Frandi							


Scelta del processo

- Materiale: C50E EN 10083-2
- Cosa vogliamo ottenere?

quindi l'effetto dell'<u>incrudimento</u> risulterebbe molto utile.

Scegliamo l'**ESTRUSIONE A FREDDO** di tipo DIRETTO

Proprietà meccaniche e fisiche

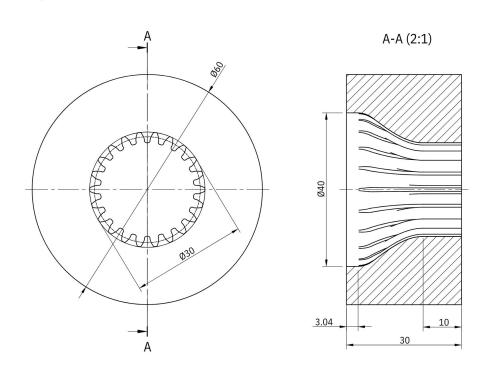
C50E

Qualità materiale	C50E
Norma di riferimento	EN 10083-2: 2006
Numero	1 1206

				S%	Cr%	Mo%	Ni%	Scostament
	max		max	max	max	max	max	ammessi
0,47-0,55	0,40	0,60-0,90	0,030	0,035	0,40	0,10	0,40	per analisi
± 0.02	+0.03	± 0.04	+ 0.005	+ 0.005				di prodotto
Cr+Mo+Ni max (0.63%							
Per il tipo C50R	n° 1.1241	S% 0.020-0.04	40 scostamen	nto di prodotto ±	0.005			

Temperature	in °C						
Deformazione a caldo	Normalizzazione	Tempra	Tempra	Rinveni	mento	Distensi	one
1100-850	860	830	850 olio o	550-650		50 sotto	la
	aria	acqua	polimero	aria		temperat	tura di rinv.
Ricottura di lavorabilità	Ricottura isotermica	Stato naturale	Tempra provetta Jominy	Prerisca per salo		Distensi dopo sa	
700	800 raff. forno	22	850	250		600 raffr	. forno
aria	fino a 660 poi aria		acqua	AC1	Ac3	Ms	Mf
(HB max 217)	(HB 180-226)	(HB max 255)		730	765	320	100

Laminat	i a caldo d	aratteristiche meco	caniche allo stato no	rmalizzato	EN 10083	-2: 2006	
diametr	o/spess.	Prova di trazione	in longitudinale a +2	20 °C			
m	ım	R	Re a)	A %	C%	Κv	HB
oltre	fino a	N/mm ² min	N/mm ² min.	min.	min.	J min.	min
	16/16	650	355	13		-	200
16/16	100/100	610	320	14	-		183
100/100	250/250	500	200	1.4			176


| 16/16 | 100/100 | 610 | 320 | 14 | -- | -- | 183 | 100/100 | 250/250 | 590 | 290 | 14 | -- | -- | 176 | 17

		20 0	Juliale a +	e e resilienza in longili	Prova di trazione	diametro/spess.	
НВ	Kv	C%	A %	Re a)	R	mm	
per informazione	J min	min.	min.	N/mm ² min	N/mm ²	fino a	oltre
225-271		30	13	520	750-900	16/8	
213-253	-	35	15	460	700-850	40/20	16/8
200-240	175	40	16	400	650-800	100/60	40/20
per informazione 225-271 213-253	J min 	min. 30 35	min. 13 15	N/mm² min 520 460	750-900 700-850	fino a 16/8 40/20	oltre

a) Re carico unitario di snervamento superiore, qualora non si manifesti marcatamente, va considerato Rp 0.2

Tabe	ella di rinver	nimento valori a te	emperatura ambiente su	tondo Ø 10 mm dopo t	tempra a 830 °C in acqu	ia	
HB		560	481	409	326	242	
HRC	;	55	50	44	35	23	
R	N/mm ²	2070	1760	1430	1080	810	
Rinv	. °C	200	300	400	500	600	

Design della matrice di estrusione

Calcoli per la deformazione e stima della forza necessaria

• Deformazione Plastica:

$$\varepsilon = ln(\frac{A_0}{A_f}) = ln(\frac{1256,6}{587}) = 0,7665$$

• Tensione in campo elastico:

$$\sigma = K \cdot \epsilon^n = 970 \cdot 0,7665^{0,15} = 932 MPa$$

Lavoro di deformazione:

$$W_i = K \cdot \frac{\varepsilon^{n+1}}{n+1} = 970 \cdot \frac{0,7665^{0,15+1}}{0,15+1} = 621 J$$

Aumento di temperatura:

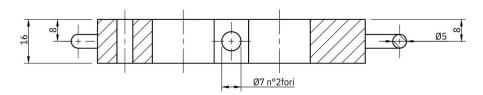
$$\Delta T = \frac{W_i}{\rho \cdot c} = 165^{\circ}$$

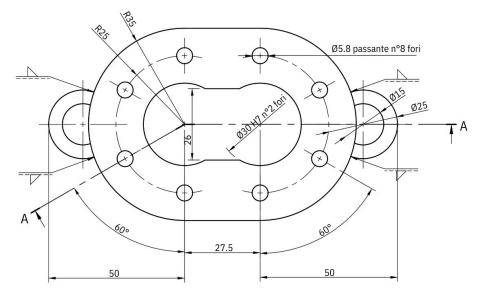
Pressione da esercitare:

$$p = \sigma \cdot (K_1 + K_2 \cdot ln(\frac{A_0}{A_f})) = 932 \cdot (0.8 + 1.2 \cdot ln(\frac{1256.6}{587}))$$
$$= 2 GPa$$

Forza totale:

$$F = p \cdot A_0 = 3.8 \, MN$$


Saldatura



Tolleranze generali: ISO 2768-mK Rugosità generale: Ra = 3.2 μm

UNIVERSITÀ DI PISA Scuola di Ingegneria								
Particolare	Particolare n°7	Materiale: G-AlSi5-CuMg	Foglio 1 : 1					
Complessivo	Pompa a i	Scala 1:1						
Disegnatori	Iacopin Frandi							

Scelte progettuali

- Materiale Semi-anelli: lega di Alluminio e Magnesio
- Giunti: a T (a cordone d'angolo)
- Tipo Saldatura: MIG

PARAMETRI DI SALDATURA:

- Modalità di saldatura: Spray arc
- Voltaggio: 25 V
- Gas di protezione: Argon
- Materiale d'apporto: filo di Al-Si 4043 di diametro Φ1.2 mm
- Velocità di apporto materiale: 10 m/min

Macchina

ALIMENTAZIONE ELETTRICA: 20 - 350 A (DC)

APPLICAZIONI

Saldatura di alluminio: spessori limite: 1.2 - 12.7 mm; Saldatura di acciaio: spessori limite: 0.5 - 12.7 mm; Saldatura di acciaio inox: spessori limite: 0.5 - 12.7 mm;

MATERIALI D'APPORTO

Alluminio: 0.9 mm - 1.2 mm; Acciaio: 0.6 mm - 1.2 mm; Acciaio inox:0.6 mm - 1.2 mm;

VELOCITÀ DEL FILO: 1.3 - 20 m/min;

Grazie per l'attenzion e