

POMPA A MEMBRANA

Progetto di Tecnologia Meccanica A cura di Milla Lanzoni e Alessia Scordato

1.INTRODUZIONE

Background

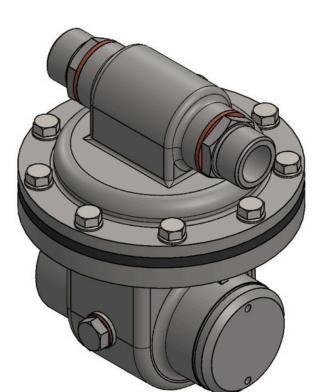
Piccola-media impresa → 2000 pompe a membrana per il settore agricolo

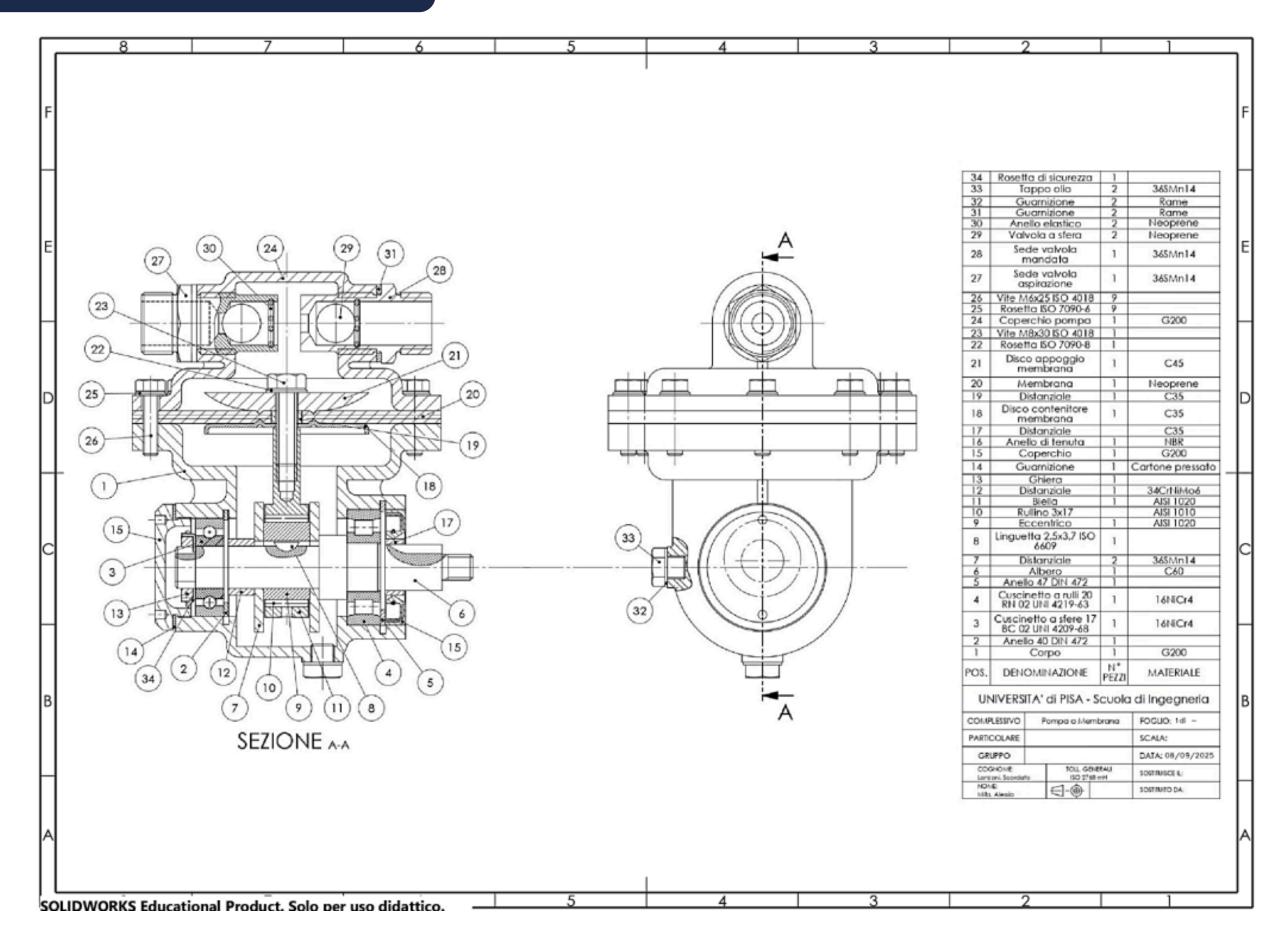
Prezzo di vendita stimato per 1 pompa → 500 €

Analisi produzione 5/34 pezzi

Costo stimato per set 5 pezzi → 75 € —→ Guadagno max annuo → 150.000 €

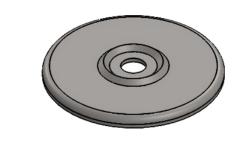
di cui


Spese operative → 125.000 €

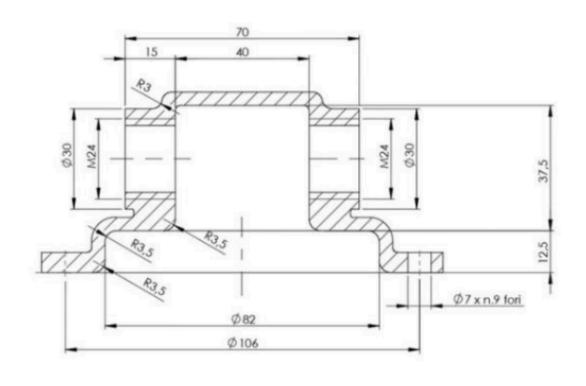


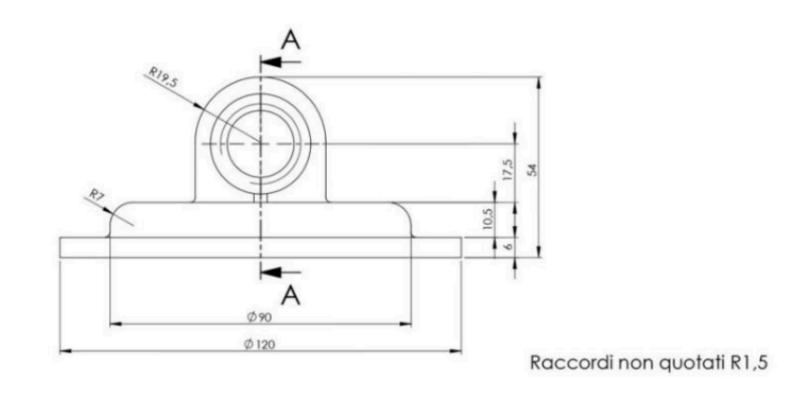

17% di guadagno





2. DISEGNI TECNICI





3. FUSIONE

24. Coperchio pompa

SEZIONE A-A

Processo

Scelta del processo in base a:

- forma: geometria simmetrica e regolare
- materiale: ghisa grigia lamellare EN-GJL-200 →
- -buona resistenza
- -facile da lavorare e colare
- -buona resistenza meccanica/all'usura/alla corrosione
- -smorza vibrazioni

SCELTA DEL PROCESSO DI FROMATURA

Formatura in terra verde sintetica

PRO

- -<u>Economico</u> (sia per materiali/attrezzatue)
- -Consolidato per oggetti in ghisa con geometrie non troppo complesse
- -Buona qualità interna
- -Per serie medio-piccole

TIPO DI TERRA

- Sabbia silicea: 90-94%

- Bentonite sodica: 5-8%

- Polverino di carbone: 2-4%

- Acqua: 2-4%

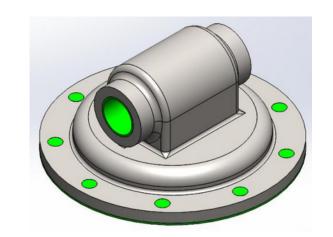
- Eventuali additivi: <1%

CONTRO

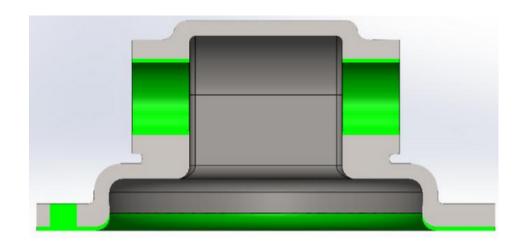
-<u>Inferiore precisione dimensionale</u> (superfici più ruvide)

Soluzioni per:

- 1) Due parti interne a contatto con valvola di mandata e valvola di aspirazione:
- → successiva lavorazione al tornio per filettature
- 2) Base del disco grande:
- → beneficia delle proprietà intrinseche del TPU (si adatta/compensa micro-irregolarità/rugosità)
- -possibile finitura al tornio


PROCESSI SCARTATI

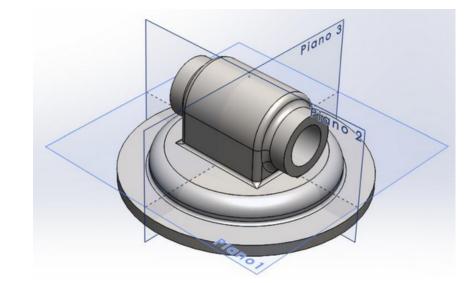
- Formatura in fossa e in sabbia-cemento → lente/per pezzi di grandi dimensioni/per piccole quantità
- Formatura *al CO2* → discreta finitura/costi maggiori
- Shell molding e Cold-box → ottima finitura/costi operativi elevati/impianti specializzati
- Microfusione e Policast → molto precisi/per oggetti dalle piccole dimensioni/cicli lavorativi costosi e complessi

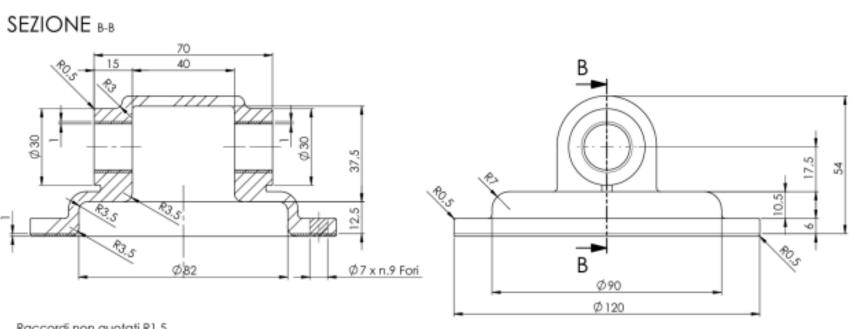


Sovrametalli

- + 1mm sia in nelle pareti interne dei due cilindri che nella parte inferiore del disco maggiore
- a riempire i 9 fori Ø7 mm

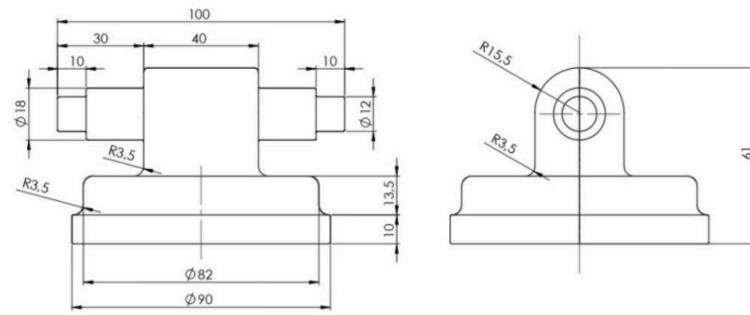
Angoli di sformo non guotati 1°

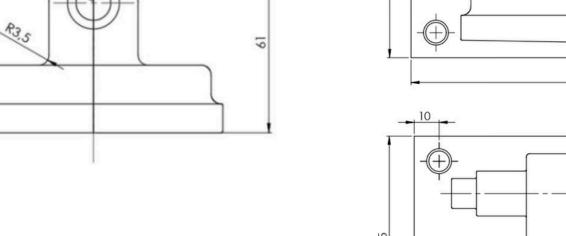


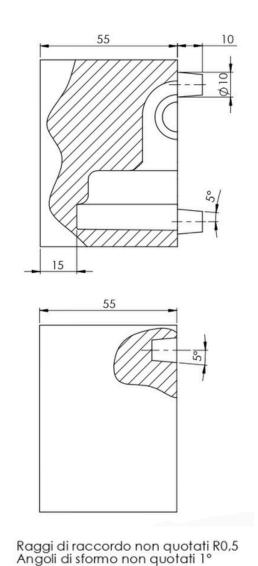

Piano di divisione

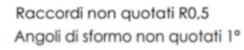
- 1) Problemi di sottosquadro nel disco maggiore e alla base dei due cilindri
- 2) No sottosquadri, ma devo inserire anima
- 3) No sottosquadri (se con anima), ma possibili problemi di centraggio con stampo

Modifiche del pezzo

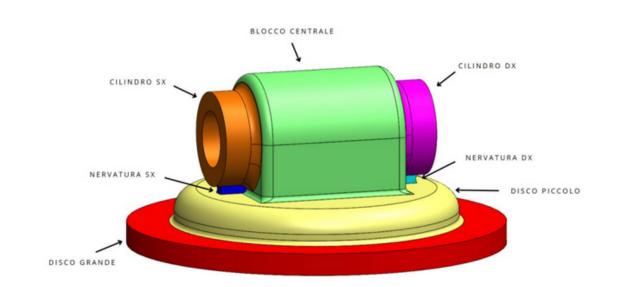

- <u>Placca modello</u>: **resina poliuretanica** (leggera/facile da lavorare/resistente per intero ciclo/economica)
- Sformi conici di 1° per facilitare estrazione del modello
- Raccordi di R 0,5 mm
- Ingrandimento del greggio: 1% (tengo conto del coefficiente di ritiro lineare medio λ → 1 : (1 − λ) = s : 1 → s
 D₁₀ = 1,01 → errore del 0,01% → buona approssimazione)






Anima

- Unica anima a perdere in sabbia silicea ad alta purezza con legante inorganico a base di silicato di sodio
- No in metallo/ceramica refrattaria (2 anime ad incastro → rischio difetti da infiltrazioni)
- 3 portate d'anima da 10 mm
- Per agevolare estrazione dalla cassa d'anima: sformi di 1° e raccordi di R 0,5mm

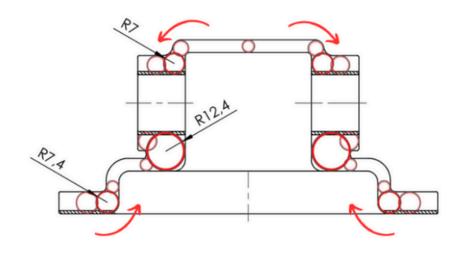


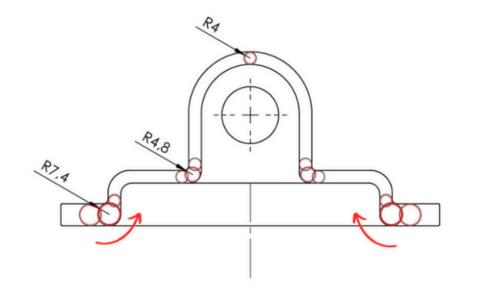
SOLIDIFICAZIONE DEL GETTO

Suddivisione del getto in 7 solidi elementari

Per stimare i tempi di raffreddamento (e individuare zone soggette a ritiri/cavità) trovo i moduli di raffreddamento.

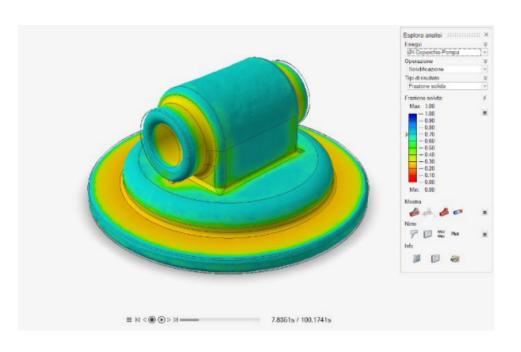
	VOLUME (MM³)	SUP. DI SCAMBIO TERMICO (MM²)	M (MM)
1. BLOCCO CENTRALE (M1)	22241,73	11175,24	1,99
2. CILINDRO DX (M2)	5136,88	2192,84	2,34
3. CILINDRO SX	5136,88	2192,84	2,34
4. DISCO PICCOLO (M3)	25058,82	11286,35	2,22
5. DISCO GRANDE (M4)	41510,88	14606,22	2,84
6. NERVATURA DX (M5)	81,59	52,83	1,54
7 NERVATURA SX	81 59	52.83	1.54

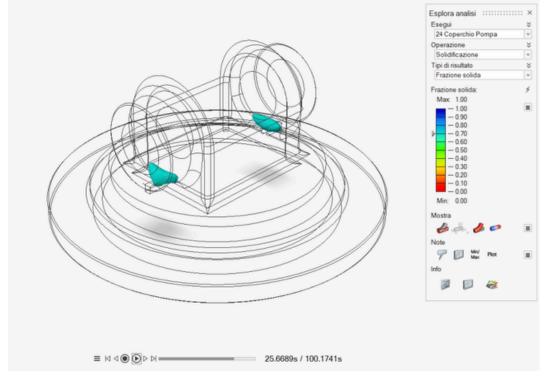

$$M = \frac{volume\ getto}{superficie\ di\ cambio\ tra\ getto\ e\ forma}$$


M4 > M2 > M3 > M1 > M5 → il disco grande raffredda per ultimo

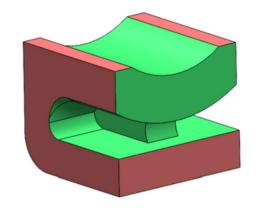
Metodo dei cerchi di Heuvers

I cerchi e la direzione dei fronti di solidificazione indicano che → l'ultima zona a solidificare è in prossimità delle nervature




SOLIDIFICAZIONE DEL GETTO

Prima simualzione con InspireCast


Inserendo i seguenti parametri, conferma quanto affermato con il metodo dei cerchi di Heuvers.

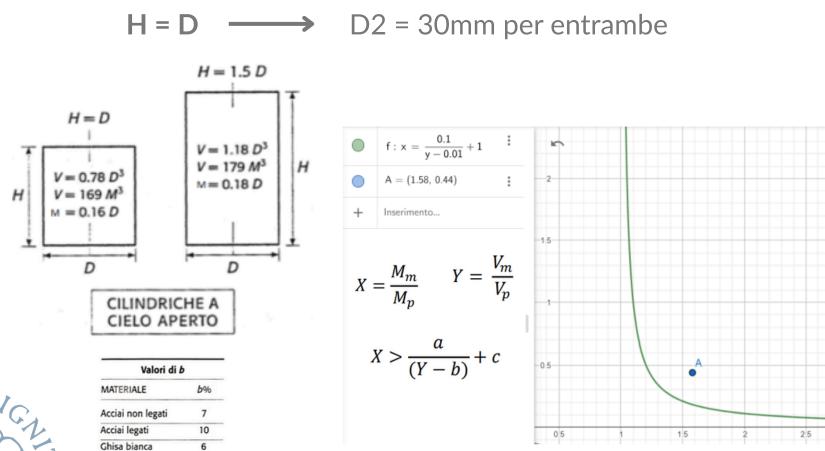
- Materiale getto: ghisa GJL 200
- Temperatura di colata: 1578,15 K
- Materiale dello stampo: sabbia verde
- Temperatura iniziale dello stampo: 293,15 K
- Spessore minimo impostato: 8 mm

Calcolo del nuovo modulo M6

M6 = 3,93 mm > di tutti

MATEROZZA

2 punti caldi simmetrici
2 materozze


Raffreddatori + 1 materozza

(aumento volume complessivo/maggiore consumo materiali/possibile difficoltà di collocamento/rimozione)

(riduce complessità costruttiva e quantità di materiale necessario)

Dimensionamento materozze

materozza cilindrica a cielo aperto

H = 1,5D

- 1) Calcolo **Mm** (*Mm* > 1,2 *Mmax*) → Mm0 = **3,4 mm**
- 2) Trovo D = 18,9 mm → approssimo a 20 mm → Mm = 3,6 mm
- 3) Trovo **Vm** = **9440 mm3**
- 4) Trovo **b** effettivo = **1%** (Ceq > 4,3) da tabella
- 5) Calcolo Vmax = $Vm \cdot ((14 b)/b) = 122720 \text{ mm}2$
- **6)** Vmax > Vgetto (122720 > 99248,37) → il volume massimo alimentabile è sufficiente
- 7) Verifica 1 con Caine → 1,26 > 1,45 → non soddisfatta
- 8) Ingrandimento D = 25 mm
- 9) Verifica 2 con Caine → soddisfatto

Ghisa grigia $C_{eq} = 3,5\%$ $C_{eq} = 4,1\%$ $C_{eq} > 4,1\%$

Dimensionamento raffreddatori

Dimensionamento 1

1) Materiale: rame

2) V = 1,5 cm3

$$V_{chill} = 1,66 \cdot V_{0c} \cdot \frac{M_{0c} - M_{req}}{M_{0c}}$$

3) Tin raff = 400°C

4) Tcolata = 1578,15 K

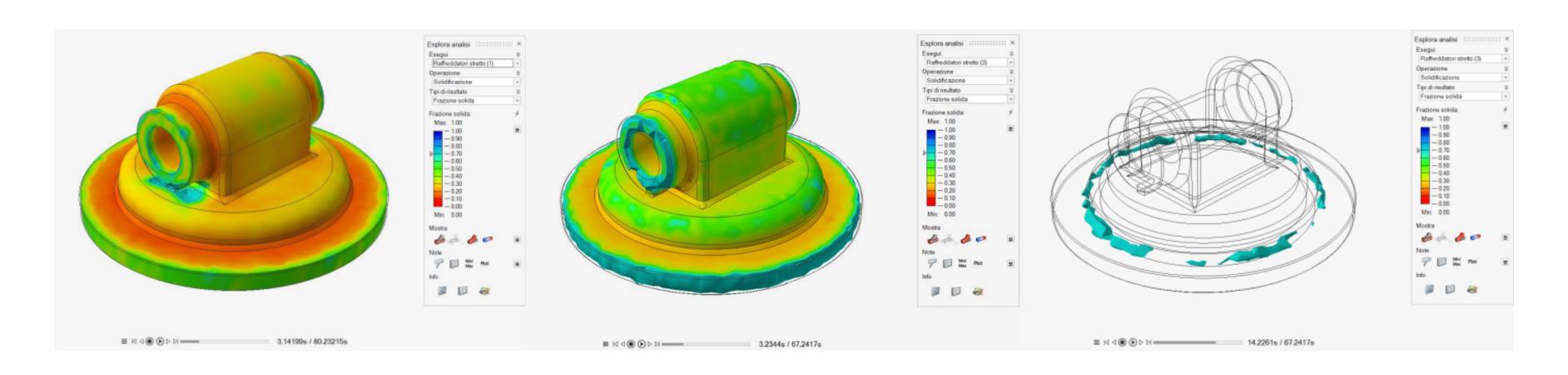
5) Posizione: attaccati al getto

Risultato: raffreddamento eccessivamente rapido/prematuro

Dimensionamento 2

1) Materiale: acciaio

$$2) V = 1,01 cm3$$


$$V_{chill} = 1.01 \cdot V_{0c} \cdot \frac{M_{0c} - M_{req}}{M_{0c}}$$

3) Tin = **600°C**

4) Tcolata = **1478,15** K

5) Posizione: allontanati di 0,5 mm dal pezzo

Conclusione: M4 > M2 > M6 > M3 > M1 > M5

Dimensionamento collare di attacco

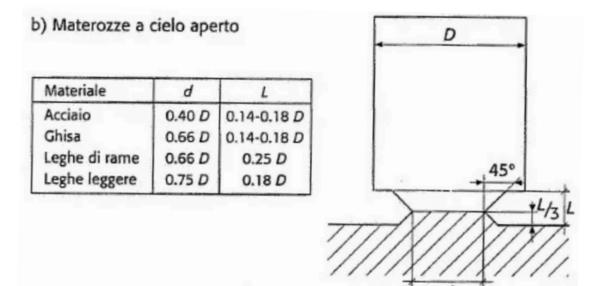
- d = 0,66D = 16,5 mm
- L = 0.18D = 4.5 mm

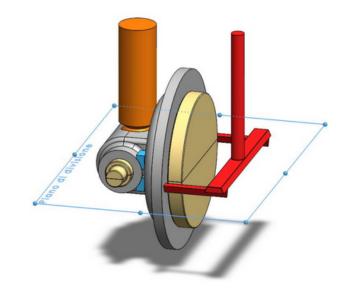
Dimensionamento sistema di colata

Sistema pressurizzato

- 1) Tempo di colata: T = 3,2 \sqrt{G} = 2,97 s (con G = $\rho \cdot V$)
- 2) <u>Sezione complessiva attacchi di colata</u>: $S = K/(v \cdot \rho) = 30,28 \text{ mm2}$ (con K = G/T)
- 3) Proporzioni sistema: 1:0,75:0,5 (C. colata: C. distribuzione: C. attacchi)

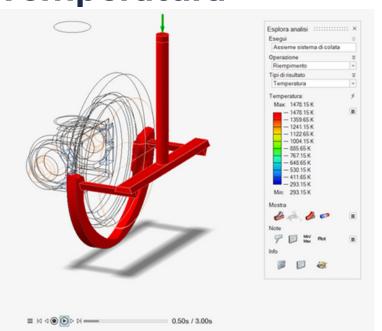
Canali di attacco: Sac singolo = 15,14 mm2 (b = h = 5,5 mm)

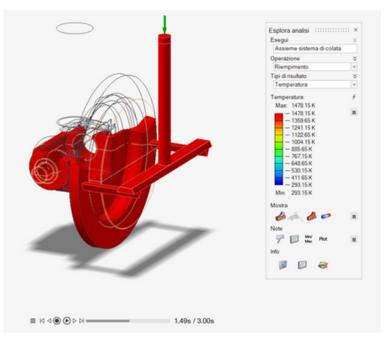

Canale di colata: $Scc = 30,28 \times 2 = 60,56 \text{ mm2} (d = 8,8 \text{ mm})$

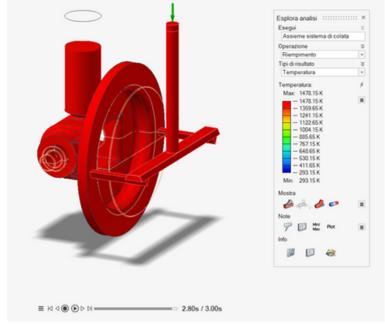


Canale di distribuzione: Scd = 0.75 Scc = 45.42 mm2 (B = 13.2 mm, b = 9.5 mm, h = 4 mm)

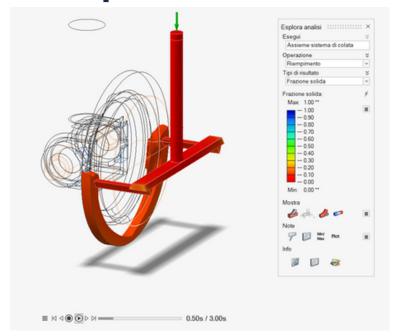
- D = 25 mm
- H = 67,5 mm → valore superiore al rapporto H = 1,5D calcolato → aumentato per arrivare a pelo dello stampo

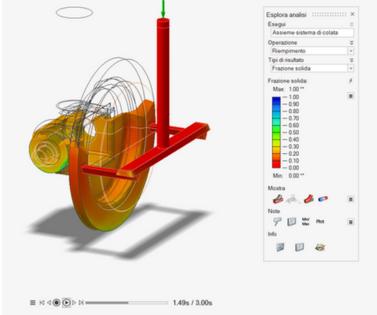


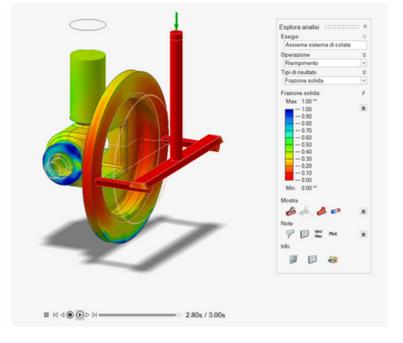



Simulazioni Inspirecast

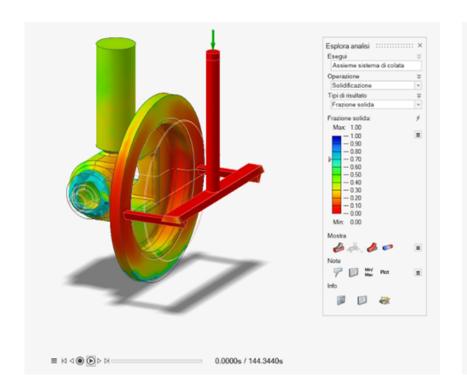
Sono state eseguite le simulazioni di riempimento, solidificazione, porosità e volume di ritiro per validare il sistema di alimentazione. Vengono successivamente riportati i seguenti risultati:

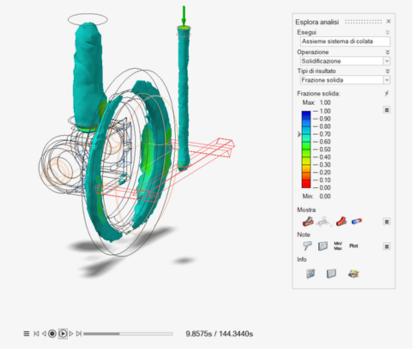

Temperatura

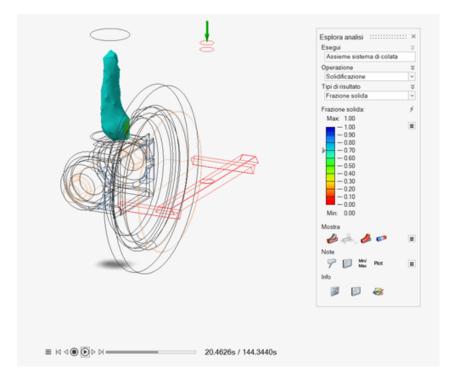




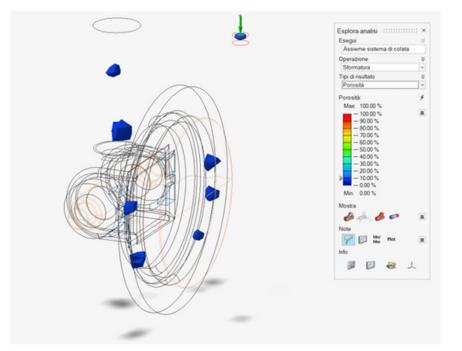
Riempimento - frazione solida

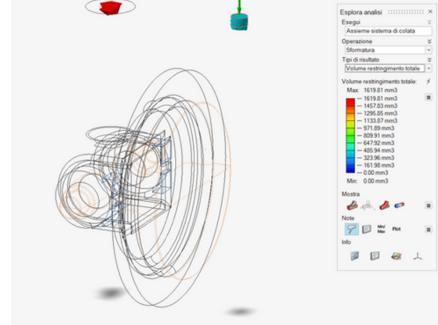





 I due cilindri laterali e il disco maggiore solidificano subito dopo il riempimento ma ciò non ostacola la colata.

Solidificazione - frazione solida

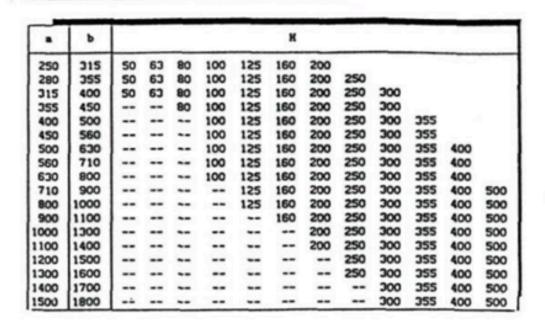


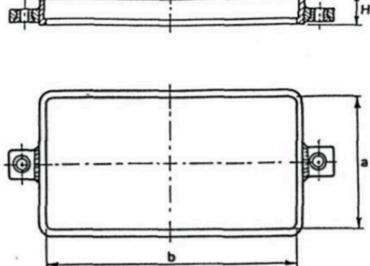


La solidificazione
 procede in maniera
 attesa, l'ultimo
 componente a
 solidificarsi è la
 materozza.

Porosità e Volume di restringimento

- Le porosità principali sono localizzate nella materozza.
- Porosità secondarie (<10%) nel disco maggiore, ma con volume limitato.
- L'unica cavità di ritiro significativa è nella materozza.



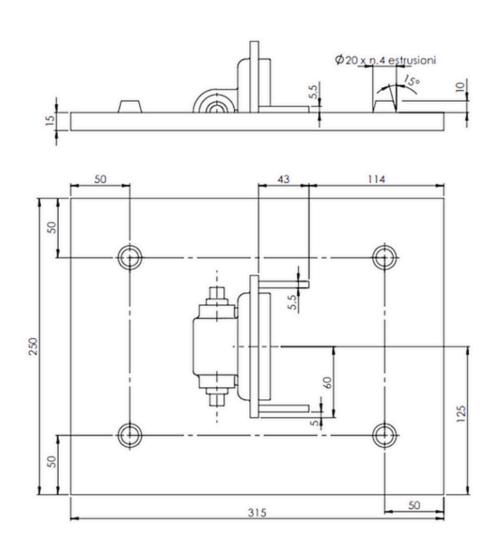

Staffe, spinte metallostatiche e placche modello

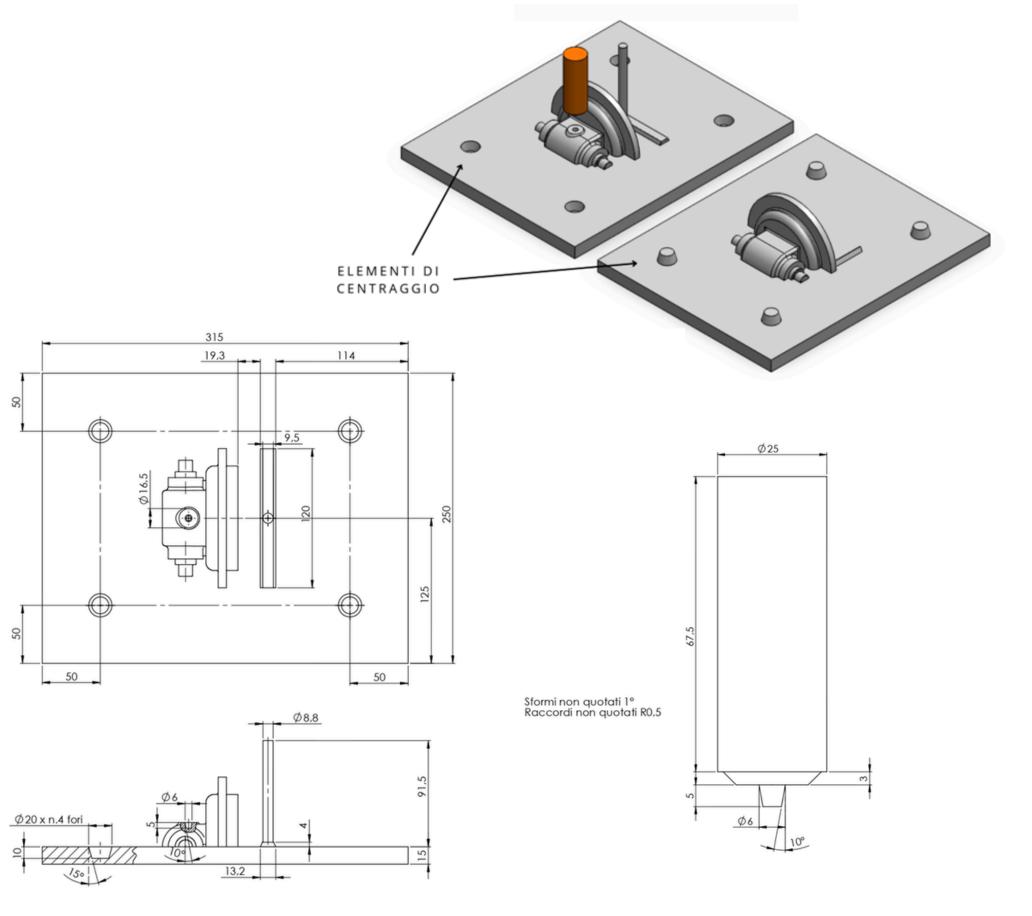
Successivamente sono state dimensionate le staffe, valutate le spinte metallostatiche e progettate le placche modello.

Staffe

- Margine preventivo tra staffa e getto ≥ 30 mm.
- Inferiore: 250 × 315 × 100 mm
- Superiore: 250 × 315 × 125 mm
- Leggero sovradimensionamento per colate future

Spinte metallostatiche


- Calcolate le forze sulle superfici cilindriche [F_c]
- Calcolata la spinta di Archimede dell'anima [F_a]
- Ottenuta una spinta totale di ≈ 106 N
- Calcolata la forza peso della staffa [F_s] pari a ≈ 143 N
- Dal confronto emerge che non servono pesi aggiuntivi


$$\rightarrow$$
 [F_s = V_{sabbia} · δ _s]

Placche modello

- Realizzate in resina poliuretanica (resistente, stabile, riutilizzabile)
- Materozza progettata con incastro removibile per facilitare sformatura e manutenzione

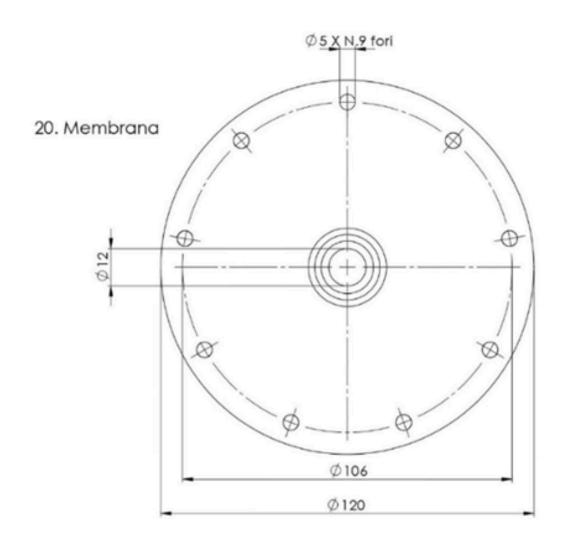
Tempi e costi

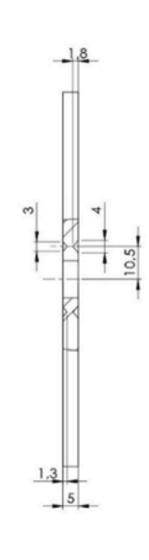
Per soddisfare la richiesta di 2000 pezzi l'anno, è necessario fondere circa 1720 kg di ghisa. L'attività viene distribuita su 250 giorni lavorativi, con una produzione giornaliera di 8 pezzi (circa 7 kg di ghisa), realizzati da due operatori in un turno da 8 ore, organizzato in due cicli di colata da 4 pezzi ciascuno.

Tempi di lavorazione

- Fusione 7 kg ghisa: 30 min (in parallelo ad altre operazioni)
- Preparazione stampo (modellazione, sabbia, anima, assemblaggio): 22 min/pezzo
- Raffreddamento e solidificazione: 60 min (in parte sovrapposto ad altre operazioni)
- Sformatura e pulizia: 40 min/pezzo

Tempi totali


- 1° ciclo (produzione di 4 pezzi): ~4h
- 2° ciclo (produzione di 4 pezzi): ~2h 30min
- Otto pezzi vengono prodotti in 6h 30min
- Un pezzo viene prodotto in 49 min

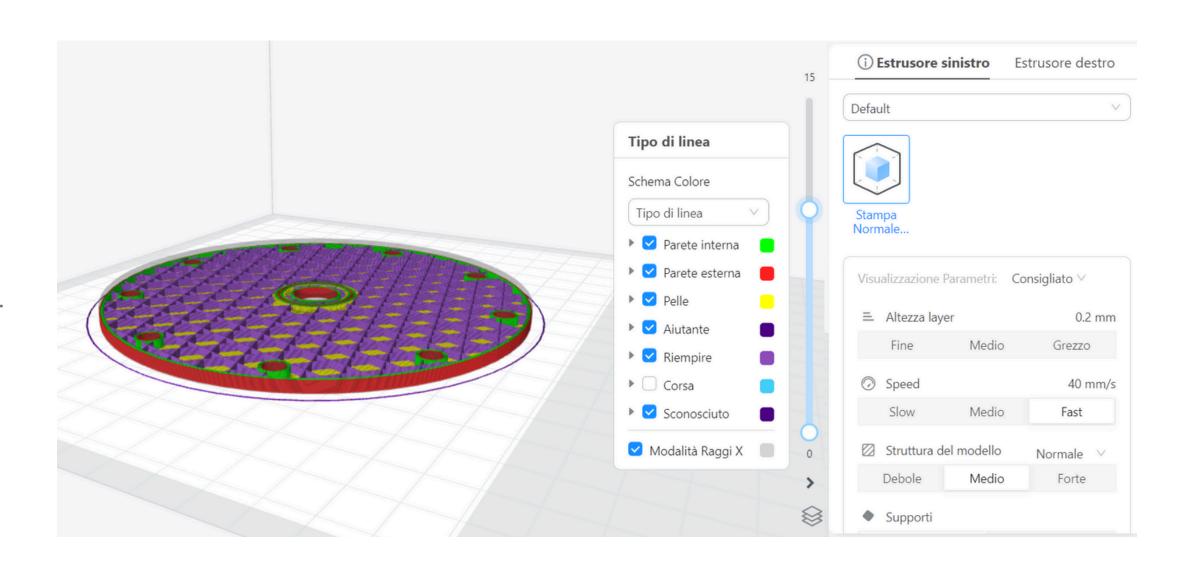

Costi principali

- Ghisa G200: 3.440 € (2 €/kg × 1720 kg)
- Sabbia e anime: 8.000 €
- Energia (forno + ausiliari): ~400 €
- Manodopera: ~26.500 €
- Totale stimato: ~38.444 € (≈ **19,20** €/pezzo)

4. STAMPA 3D

Scelta del processo, materiale e macchina

Per la realizzazione del componente n.20 (membrana) è stato scelto il processo di FDM (Fused Deposition Modeling) che consiste nell'estrusione di filamento termoplastico strato su strato.


- Materiale: TPU (Shore 85–88 A), elastico, resistente ad acqua e oli, adatto a sollecitazioni cicliche
- Macchina: Snapmaker J1s High Speed IDEX
- Volume stampa: 300 × 200 × 200 mm
- Ugelli 0,4 mm, parametri regolabili
- Adatta per TPU e componenti funzionali
- Prezzo: 1.028,30 €

Parametri di stampa

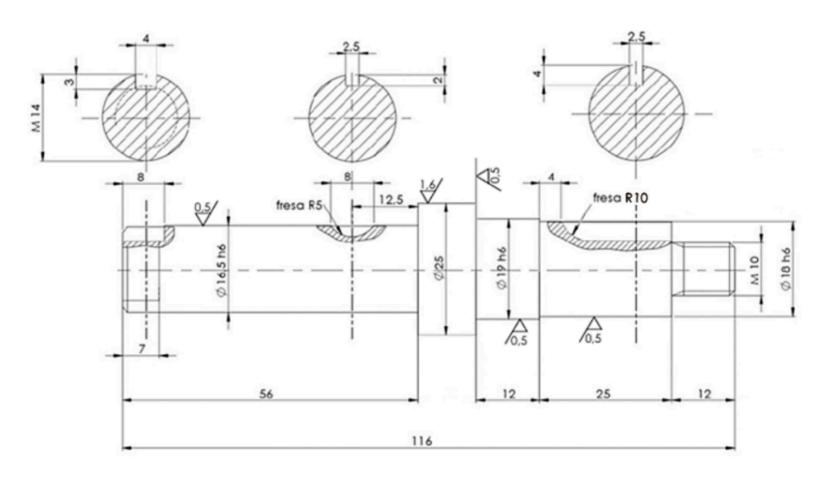
Scelta dei parametri

- Modalità Copy (2 pezzi stampati simultaneamente)
- Temperatura di estrusione 225 °C
- Piano preriscaldato a 50 °C
- Controllo della retrazione disattivato per evitare stringing
- Velocità: 40 mm/s
- Software: Snapmaker Luban 4.15.0

Tempi e costi

Tempi

- Dal software 1 membrana viene realizzata in 4 h 54 min
- Lotto 2 pezzi: 4 h 54 min
- Totale 2000 pezzi: 4900 h
- Con 4 stampanti → 1225 h totali
- Operatore attivo: 39 min/ciclo × 250 cicli = 162,5 h (~20 gg lavorativi)


Nota: Tempi attivi della manodopera prudenziali.

Costi

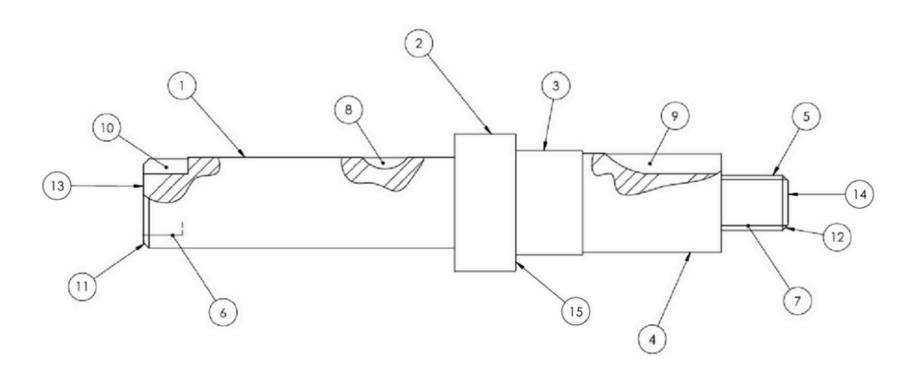
- 4 stampanti: 4113 € (ammortizzato in 4 anni)
- Materiale TPU: 4040 € (2,02 €/pz)
- Manodopera: 2438 €
- Totale: 7.506,25 €
- Costo del singolo pezzo 3,75€

5. ASPORTAZIONE DI TRUCIOLO

Smussi non quotati 1x45°

Tolleranza con cuscinetto a sfere (3) h6/H7
Tolleranza con cuscinetto a rulli (4) h6/H7
Tolleranza con distanziale (7, 12) e eccentrico (9) h6/G6
Tolleranza con distanziale (17) h6/H7

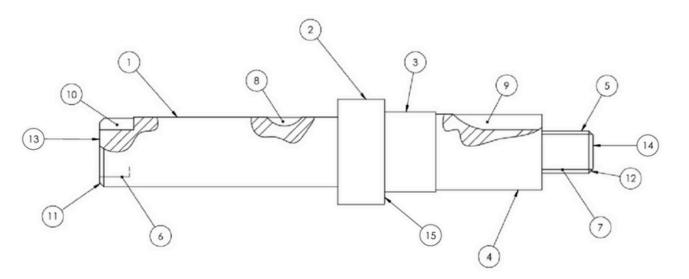
Rugosità non indicate 3,2


Materiale

Trafilato a profilo tondo (Ø26 mm x L936 mm) in acciaio C45 (no C60) fornito da Bettinelli Acciai.

CARATTERISTICHE MECCANICHE												
stato	C45E 1.1191 C45R 1.1201 EN 10277-5: 2008 TRAFILATO A FREDDO +C											
	rione	Prova di trazione in longitudinale										
mm		R	Rp 0,2	A%	НВ							
oltre	fino a	N/mm^2	N/mm^2 min	min	per informazione							
5	10	850-1050	595	8	253-319							
10	16	810-1010	565	8	243-300							
16	40	750-950	525	9	225-286							

Suddivisione delle superfici e scelta del processo


Suddivisione delle superfici							
N. Superficie	Processo						
1, 2, 3, 4, 5	Cilindriche esterne coassiali	Tornitura seguita da rettifica (se necessario)					
6, 7	Filettata cilindrica esterna coassiale a 1, 2, 3, 4, 5	Tornitura (filettatura)					
11, 12	Smusso esterno	Tornitura (smusso)					
13, 14, 15	Piana ortogonale all'asse delle 1, 2, 3, 4, 5	Tornitura					
8, 9, 10	Cave e alloggiamenti per linguette	Fresatura					

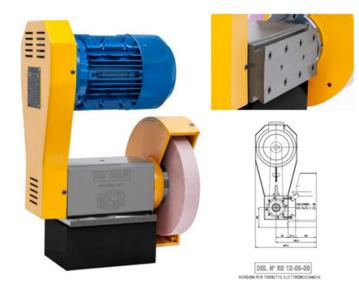
Fasi di lavorazione

		Ciclo di lavorazione					
Fase	Sottofase	Operazione	Macchina				
10		Taglio barra	Sega a nastro			Sgrossatura sup.5	
20	Α	Sfacciatura sup.13				♦ Finitura sup.3	
		◆ Sfacciatura sup.14				◆ Finitura sup.4	
	В	Centraggio				Filettatura sup.7	
		 Sgrossatura sup.2 				◆ Smussatura sup.12	
		 Sgrossatura sup.1 				◆ Finitura sup.15	
		 Filettatura sup.6 				◆ Rettifica sup.1	
		◆ Smussatura sup.11		30	Α	Realizzazione sup.10	
	С	♦ Sgrossatura sup.3	Tornio Parallelo		В	Realizzazione sup.8	F
		 Sgrossatura sup.4 			С	Realizzazione sup.9	

Macchinari

Segatrice a nastro

- Segatrice a nastro Metallkraft MBS 105
- Una scelta migliore sarebbe stata ad esempio una sega a nastro più consona alla scala industriale e con potenze maggiori, dell'ordine di 1,5-2 Kw per evitare usura rapida del macchinario.


Tornio

- Tornio parallelo Fervi T940
- DRO a 3 assi (±0,01 mm)
- Mandrino autocentrante 3+3 Ø 160 mm
- Contropunta fissa CM 3
- Torretta a cambio rapido TOAE

Dati tecnici della sega a nastro Potenza motore 1,01 kW Tensione del motore 230 V / 50 Hz Velocità nastro 30 - 80 m/min Dimensioni del nastro 1335 x 13 x 0,65 mm Dimensioni macchina 630 x 300 x 410 mm Prezzo di listino 674,29 €

Dati tecnici del Tornio T940	
Altezza punte	150 mm
Diametro max sul banco	300 mm
Diametro max sul carro	173 mm
Passaggio barra	38 mm
Distanza tra le punte	940 mm
Altezza utensile	16 mm
Velocità del mandrino (autocentrante 3+3)	64 - 1500 rpm
Numero di velocità del mandrino	9
Filettature metriche	0,5 - 3,5 mm
Potenza motore	1,5 kW
Alimentazione	230 V
Dimensioni	000 v 4000 v 4070 mm
Dimensioni	600 x 1600 x 1270 mm
Prezzo di listino	8459,99 €

Rettificatrice

- Modulo RAPID HP2
- Fissaggio alla torretta con cambio TOAE
- Peso di 25 kg

Fresatrice

- Fresatrice a colonna HBM BF 60
- DRO (ISO 40)
- Avanzamento automatico della tavola
- Impianto di raffreddamento completo
- Serraggio con morsa HBM Tipo 10

Dati tecnici della rettificatrice

 Potenza motore
 1,5 kW

 Alimentazione
 400 V 50 Hz

Velocità di taglio 30 m/s

Flangia porta mola (ø interno) 50 mm
Flangia porta mola (ø esterno) 100 mm

Mola per esterni 254 x 40 x 50 mm

Ingombri della macchina 377 x 307,5 x 508,66 mm

Prezzo di listino 800 €

Dati tecnici della fresatrice

Potenza motore orizzontale 0,85 – 1,5 kW

Alimentazione 400 V

Gamma di velocità (8 passi) 115 – 1.750 giri/minuto

Corsa del mandrino 125 mm

Attacco del mandrino ISO 40

Distanza massima mandrino dalla tavola 375 mm

Distanza mandrino dalla colonna 210 - 550 mm

 Capacità massima di fresatura in acciaio
 40 mm

 Capacità massima di foratura in acciaio
 35 mm

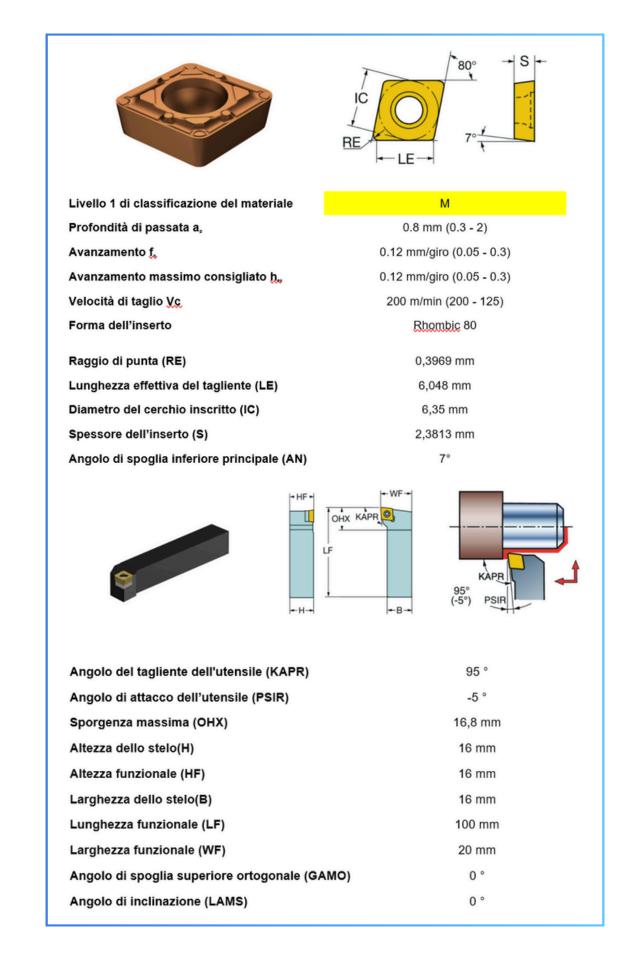
 Spostamento laterale massimo
 175 mm

 Spostamento longitudinale massimo
 560 mm

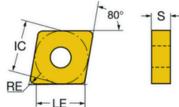
Ingombri della macchina 1300 x 1400 x 2100 mm

Prezzo di listino 6249,98 €

Utensili


Sgrossature, finiture e smussi

Sgrossature leggere, finiture e smussi


- CCMT 06 02 04-WF in carburo cementato
- SCLCR 1616H09 (portautensile)

Sgrossature pesanti

- CNMG 120408-MM in carburo cementato
- PCLNR 1616H12-M (portautensile)

Livello 1 di classificazione del materiale

Profondità di passata a,

Avanzamento f

Avanzamento massimo consigliato h.

Velocità di taglio Vc

Forma dell'inserto

Raggio di punta (RE)

Lunghezza effettiva del tagliente (LE)

Diametro del cerchio inscritto (IC)

Spessore dell'inserto (S)

М

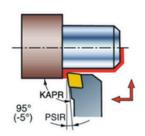
3 mm (0.5 - 5.7)

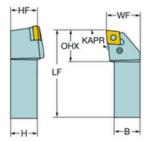
0.25 mm/giro (0.1 - 0.45)

0.25 mm/giro (0.1 - 0.45)

180 m/min (235 - 135)

Rhombic 80


0,7938 mm


12,0959 mm

12,7 mm

4,7625 mm

Angolo del tagliente dell'utensile (KAPR)	95°
Angolo di attacco dell'utensile (PSIR)	-5 °
Sporgenza massima (OHX)	27,2 mm
Altezza dello stelo(H)	16 mm
Altezza funzionale (HF)	16 mm
arghezza dello stelo(B)	16 mm
unghezza funzionale (LF)	100 mm
arghezza funzionale (WF)	20 mm
Angolo di spoglia superiore ortogonale (GAMO)	-6 °
Angolo di inclinazione (LAMS)	-6 °

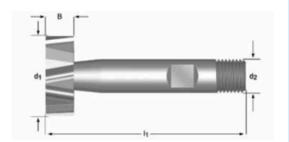
Filettature esterne

- 11ER A60 BCU20T in carburo rivestito
- SER 1616 H11 (portautensile)

Rettifica

- Mola Norton 32A46IVS
- Grana abrasiva in ossido di alluminio

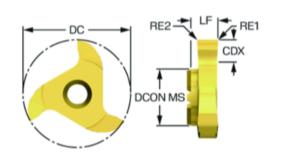
Diametro (mm) †1	Foro (mm) ↑↓	Spessore (mm) 11	Granulometria †↓	Max Velocità Operativa (m/s) ↑↓	Specifica †↓	Abrasivo †↓	Forma †↓	Part # ↑↓
250	76	32	46	35	32A46IVS	Ossido di alluminio	05 Mola con incavo cilindrico su un lato	69936639419
200	76	20	46	35	32A46IVS	Ossido di alluminio	01 Mola cilindrica	69936639554



Fresatura

Superficie 8:

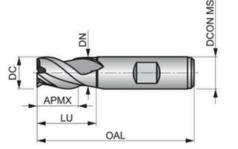
- fresa a disco Dormer per Woodruff
 Master 703
- pinza ER16 DIN 6499/B LTF con Ø6 mm e relativo mandrino



10,5 mm
2,5 mm
50 mm
6 mm
5° - 10°
5 mm
8
51,96€

Superficie 9:

- testina 327R12-22 25002-GM 1025 con adattatore 327-16A24SC-12 (Sandvik Coromant)
- pinza pinza ER32 e relativo mandrino



Diametro di taglio (DC)	21,7 mm
Larghezza di taglio (CW)	2,5 mm
Profondità di taglio massima (CDX)	4,5 mm
Diametro utensile lato macchina (DCONMS)	12 mm
Angolo di tagliente	1,5°
Raggio di punta	0,2 mm
Numero di taglienti	3
Prezzo di listino	59,80€

Superficie 10:

- fresa a candela Dormer C3674.0
- pinza ER32 e relativo mandrino

Diametro di taglio (DC)	4 mm
Profondità di taglio massima (APMX)	7 mm
Diametro del collo (DN)	4 mm
Lunghezza del collo (LU)	7,8 mm
Lunghezza totale utensile (OAL)	51 mm
Diametro di attacco (DCON MS)	6 mm
Angolo di tagliente	15°
Numero di taglienti periferici	3
Prezzo di listino	38,50 €
FIELLO UI IISUITO	50,50 €

Strumenti di controllo

Calibro ventesimale

• Lunghezze, spessori e diametri generali.

Micrometro per esterni (0,001 mm, 0-25 mm)

Controllo diametri in tolleranza h6 (∅16,5 – ∅18 – ∅19).

Micrometro per interni (2-6 mm)

• Misura precisa di profondità e larghezza delle cave.

Rugosimetro (Ra, Rz)

• Controllo finitura superficiale (Ra ≤ 0,013 mm).

Anelli filettati (Passa/Non passa)

• Verifica corretta esecuzione filettature M14 e M10 secondo ISO.

Calcolo dei parametri di taglio per tornio e fresatrice

Per il calcolo dei principali parametri di taglio sono stati eseguiti i seguenti passaggi:

	Tabella 3 • Velocità di taglio $V_{\rm f}$ (mm/min) consigliate per tipi di lavorazioni al tornio																	
	toriale da lavorare Surveytura Finitura Sgrossatura						Filettatura				Fora-							
Materiale da lavorare	Sg	rossatı	ıra		Finitura	1			nitura		ı	roncatı	ıra	Alesa- tore	Filiera	Svasa- tore	Ma- schio	tura
R = acciaio rapido RR = acciaio superrapido W = placchetta di metallo duro (widia)					V								10)					
	R	RR	W	R	RR	W	- 1	2	١	V	R	W	R	R	R	R	R	RR
Acciaio extra dolce	60	90	100	80	120	150	40	70	70	100	45	95	50	15	15	20	7	35
Acciai duri	35	50	95	45	70	120	25	40	50	95	50	70	30	9	8	18	6	31
Acciai extra duri	30	40	65	40	50	80	20	30	40	65	18	55	25	8	6	10	5	23
Acciai bonificati	20	25	60	30	35	70	15	18	35	60	15	50	20	7	5	8	4	20
Ghisa dolce	40	60	90	50	70	100	30	40	65	90	25	80	30	14	7	10	6	22
Ghisa dura	20	40	60	30	55	70	15	20	40	60	18	55	18	8	6	8	4	20
Rame - Bronzo	45	65	165	60	90	260	35	45	80	160	30	100	40	14	11	18	9	50
Ottone	100	200	220	200	300	350	75	100	100	220	55	200	80	20	15	20	10	85
Alluminio	200	300	400	300	500	600	150	200	300	400	150	300	150	30	24	30	15	175

	1	2	3
Α	64	640	380
В	210	1500	1300
С	130	940	790

IOPHITIE	7
Tornitur	a

- Determinazione velocità di taglio massima in base alla macchina (n max e Ø pezzo).
- Definizione parametri di lavorazione: profondità passata, avanzamento, numero passate.
- Scelta della velocità teorica (da tabella)
- Adattamento ai giri disponibili sul tornio.
- Calcolo sezione di truciolo, pressione di taglio, forza di taglio, potenza richiesta.
- Verifica compatibilità con la macchina (potenza disponibile e limiti giri).
- Inserimento dati nei fogli di ciclo e di fase.

NUMERO DI PASS	NUMERO DI PASSATE INDICATIVE PER FILETTATURE METRICHE ESTERNE E INTERNE														
PASSO mm.	6,0	5,5	5,0	4,5	4,0	3,5	3,0	2,5	1,75	2,0	1,5	1,25	1,0	0,75	0,5
Numero passate	16	16	14	14	14	12	12	10	8	8	6	6	5	4	4

Filettatura

- Avanzamento = passo filettatura
- Numero passate stabilito facendo affidamento ai valori in tabella (8 per M14, 5 per M10)
- Profondità decrescente per ridurre usura e vibrazioni

Rettifica

- Calcolo del rapporto di rettifica G (da letteratura: G = 30)
- Definita la velocità di taglio mola Vt = 30 m/s
- Da Vt ricavati i giri mola n ≈ 2865 giri/min
- Velocità di rotazione del pezzo np ≈ 48 giri/min
- Avanzamento f ≈ 0,36 mm/giro
- Profondità di passata ap = 0,01 mm ×4 + 0,005 mm ×2
- Infine, calcolo della potenza assorbita W = 0,17 kW

Operazione	Velocità rotazione pezzo	Avanzamento longitudinale	Avanzamento trasversale	Profondità di passata (mm)
Rettifica in tondo esterna	¹ / ₆₀ velocità periferica della mola	$\frac{2}{10} \div \frac{2}{3}$ spessore giro pezzo	/	0.02+0.06 sgross. 0.002+0.01 finit.
Rettifica in tondo interna	1/100 velocità periferica della mola	(idem)	, /	0.01
Rettifica in piano tangenziale	4 4 1 1 1	8+20 m/min	$\frac{2}{10} + \frac{2}{3}$ spessore corsa	0.05+0.2 sgross. 0.01+0.05 finit.
Rettifica in piano frontale	/ .	8+20 m/min	1	(idem)

Fresatura

In aggiunta ai parametri visti per il tornio sono stati calcolati anche:

- Avanzamento tavolo vf, avanzamento per dente fz, avanzamento per giro a
- Velocità di avanzamento Va
- Profondità di passata p e sezione del truciolo ($S = p \cdot fz$)
- Componente tangenziale della forza (T = $Pt \cdot z \cdot S$)
- Potenza richiesta (W = T · Vt / 60 000)

	L	H
BC	115	230
AC	290	580
BD	360	720
AD	875	1750

Università di Pisa

- Vengono presentati i fogli di ciclo e di fase con i principali parametri di taglio
- Una scelta di velocità inferiore a quelle presentate sarebbero state più adatte alla gestione del processo da parte dell'operatore
- Sono stati aggiunti i metodi di controllo alla fine di ogni sottofase

Inge	gneria p	per il Design Industriale		Ciclo di lavorazione elemento: Albero						
	N	laterie prime		Dimensioni: Barr	Materiale: C45 a cilindrica trafilata di φ	F	Note			
	S-#-			Operazione		N° giri mandrino	N° passate	Avanzamento [mm/giro]		
Fase	Sotto fase	Schizzo di lavorazione	n°	Descrizione	Utensile	Controllo	Velocità di taglio [m/min]	Profondità di passata [mm]	Potenza di taglio [Kw]	
10					Sega a nastro	Calibro ventesimale, perpendicolarità			W _t = 0,115	7 tagli per 250 barre
20	А			-Montaggio del pezzo nel mandrino autocentrante facendolo sporgere	CCMT 06 02 04-WF 1125	Calibro ventesimale	n = 790	n _p = 10	a = 0,1	
			1	il pezzo di 58,5 mm. -Sfacciatura sup. 13	SCLCR 1616H09 (portautensile)	(ortogonalità visiva), rugosimetro	Vt = 62,05	a _p = 1,25	W _t = 0,196	
				-Giro il pezzo -Inserisco il pezzo nel mandrino	CCMT 06 02 04-WF 1125	Calibro (lunghezza	n = 940	n _p = 4	a = 0,1	
			2	facendolo sporgere di 60,5 mm. -Sfacciatura sup. 14	SCLCR 1616H09 (portautensile)	totale), rugosimetro	Vt = 29,53	a _p = 1,25	W _t = 0,097	
	В			-Tolgo il pezzo dal mandrino	CCMT 06 02 04-WF 1125	Concentricità,	n = 940	n _p = 1	a = 0,07	
			1	-Centraggio del pezzo tra punta e contropuntaSgrossatura sup. 2	SCLCR 1616H09 (portautensile)	calibro ventesimale, rugosimetro	Vt = 76,78	a _p = 0,5	W _t = 0,087	

Parametri tornitura:

Velocità di taglio e n. giri

$$V_{t} = \frac{\pi \cdot D_{i} \cdot n}{1000}$$

Avanzamento

$$a = \sqrt{(R \cdot 8 \cdot RE)}$$

(con R= rugosità, RE = raggio di punta)

Potenza di taglio

$$W_t = \frac{F_t \cdot V_t}{60000}$$

dove:

Forza di taglio $F_t = P_t \cdot S$

Pressione di taglio $P_t = P_S \cdot S^{-(1/n)}$

Sezione di truciolo $S = a \cdot a_p$

Press. di t. specifica $P_s = 2.4 \cdot \text{Rm}^{0.454} \cdot \beta^{0.666}$

	2	-Cambio utensile	CNMG 120408-MM	Calibro	n = 1300	n _p = 1	a = 0,056		
	2	-Sgrossatura sup. 1	PCLNR 1616H12-M (portautensile)	ventesimale	Vt = 102,1	a _p = 3,95	W _t = 0,51		
			11ER A60 BCU20T		n = 64	n _p = 1	a = 2 calcolat passata	Parametri calcolati per la passata maggiore.	
	3	-Cambio utensile -Filettatura sup. 6	SER 1616 H11 (portautensile)	Anello filettato passa/non passa M14	Vt = 2,81	a _p = 0,2	W _t = 0,017	In totale vanno fatte 8 passate (con a, da 0,2; 0,2; 0,18; 0,1; 0,1; 0,1; 0,1; 0,1)	
	4	-Cambio utensile	CCMT 06 02 04-WF 1125 SCLCR 1616H09 (portautensile)		02 04-WF 1125 Controllo visivo	n = 1300	n _p = 1	a = 0,33	
	4	-Smussatura sup. 11		Controllo visivo	Vt = 67,39	a _p = 1	W _t = 0,46		
С		-Giro il pezzo -Inserisco il pezzo nel mandrino	CNMG 120408-MM		n = 1300	n _p = 1	a = 0,056		
	1	facendolo sporgere di 60,5 mm. -Cambio utensile -Sgrossatura sup. 3	PCLNR 1616H12-M (portautensile)	Calibro ventesimale	Vt = 102,1	a _p = 4,05	W ₁ = 0,52		
		-Cambio utensile	CCMT 06 02 04-WF 1125	Calibro	n = 1300	n _p = 1	a = 0,04		
	2	-Sgrossatura sup. 4	SCLCR 1616H09 (portautensile)	ventesimale	Vt = 80,05	a _p = 1	W _t = 0,101		

	3	-Cambio utensile	CNMG 120408-MM	Calibro	n = 790	n _p = 1	a = 0,143	
		-Sgrossatura sup. 5	PCLNR 1616H12-M (portautensile)	ventesimale	Vt = 46,16	a _p = 4,3	W _t = 0,52	
	4	-Cambio utensile	CCMT 06 02 04-WF 1125	Micrometro esterni (h6)	n = 1300	n _p = 1	a = 0,04	
	4	-Finitura sup. 3	SCLCR 1616H09 (portautensile)	esterni (h6)	Vt = 80,05	a _p = 0,3	W _i = 0,039	
	5	Siniture out 4	CCMT 06 02 04-WF 1125	Micrometro	n = 1300	n _p = 1	a = 0,04	
	5	Finitura sup. 4	SCLCR 1616H09 (portautensile)	esterni (h6)	Vt = 75,93	a _p = 0,3	$W_t = 0.037$	
	6	-Cambio utensile	11ER A60 BCU20T	Anello filettato passa/non	n = 64	n _p = 1	a = 1	Parametri calcolati per la passata maggiore. In totale
	0	-Filettatura sup. 7	SER 1616 H11 (portautensile)	passa M10	Vt = 2,01	$a_p = 0.2$	W _t = 7,06	vanno fatte 5 passate (con a _p da 0,2; 0,11; 0,1; 0,1; 0,1)
	7	-Cambio utensile	CCMT 06 02 04-WF 1125	Controllo visivo	n = 940	n _p = 1	a = 0,1	
	′	-Smussatura sup. 12	SCLCR 1616H09 (portautensile)	CONTROLLONG VISIYO	Vt = 29,53	a, = 1	W _t = 0,081	

Parametri fresatura:

Velocità di taglio e n. giri

$$V_{t} = \frac{\pi \cdot D \cdot n}{1000}$$

Avanzamento per dente

$$f_z = \frac{V_f}{n \cdot z}$$

(con v_f= avanzamento per tavolo)

Avanzamento per giro

$$a = z \cdot f_z$$

Velocità di avanzamento

$$V_a = n \cdot z \cdot f_z$$

		8	Finitura sup. 15	CCMT 06 02 04-WF 1125	Calibro ventesimale,	n = 940	n _p = 5	a = 0,04			
			r intura sup. 15	SCLCR 1616H09 (portautensile)	rugosimetro	Vt = 73,83	a _p = 0,6	W _t = 0,062			
		9	-Montaggio Rettificatrice	Norton 32A46IVS	Micrometro esterni (tolleranza h6,	n = 2865	n _p = 1	a = 0,36			
			-Rettifica sup. 1	RAPID Original HP2 finitura con rugosimetro Ra < 0,013 mm) Vt =	Vt = 30 m/s	a _p = 0,05	W _t = 0,17				
30	А	1	-Posizionamento del pezzo nella morsa	Dormer C3674.0 Pinza ER16 Micrometro per interni	Dormer C3674.0	Dormer C3674.0	Micrometro per	n = 875	n _p = 1	f _z = 0,04	f _z : Avanzamento per dente [mm/dente]
			-Fresatura alloggiamento dentino ghiera (sup. 10)		Vt = 11	p = 3	W _t = 0,097	p: profondità di passata [mm]			
	В	1	-Rotazione del pezzo di 90° - Cambio utensile		Micrometro per interni	n = 720	n _p = 1	f _z = 0,06			
		1	-Fresatura alloggiamento per chiavetta Woodruff (sup. 8)		interni	Vt = 23,75	p = 2	W _t = 0,56			
	С		-Cambio pinza e utensile -Fresatura	327R12-22 25002-GM 1025	Micrometro per	n = 875	n _p = 1	f _z = 0,04			
			alloggiamento per linguetta (sup. 9)	Pinza ER32	interni	Vt = 59,65	p = 4	W _t = 0,70			

Tempi

Fase 10 - Taglio barra Ø26 mm x L936 mm

Annualmente è previsto il taglio di 250 barre.

Ogni barra viene tagliata in 8 parti ad una velocità di avanzamento di 40 mm/min.

- Tempo taglio **1** barra: (39 s + 15 s) x 7 = 6,3 min
- Tempo totale annuo: 26 h

Fase 20 - Tornitura

Tempi attivi → Ta tot = 12,15 min

$$t_a = \frac{L + e}{a \cdot n}$$

L = *lunghezza lavorata* (per la sfacciatura questa lunghezza equivale alla metà del diametro del pezzo all'inizio della lavorazione, ovvero h)

e = *extra corsa* (per noi e = 2mm)

a = avanzamento

n = numero di giri

Tempi passivi → Tp tot = 52,96 min

Azione	Tempo
Allontanare contropunta	0,20
Avviare/fermare la macchina	0,05
Controllare una dimensione con calibro o micrometro	0,20
Disimpegnare l'utensile	0,10
Eseguire centratura	0,10
Eseguire gola interna/esterna	0,40
Eseguire smusso	0,10
Innestare/disinnestare l'avanzamento automatico	0,05
Montare e regolare il morsetto autocentrante sul mandrino	5
Montare il pezzo tra le punte con brida	1,20
Montare il pezzo tra mandrino e contropunta	1,20
Montare la torretta girevole	0,50
Montare nel mandrino la punta menabrida	1
Montare o smontare il mandrino nella contropunta	0,40
Montare o smontare la contropunta	0,30
Montare o smontare punta per centri (o elicoidale) nel mandrino	0,35
Montare o smontare utensile su torretta girevole	0,70
Posizionare e bioccare il pezzo nel morsetto autocentrante	0,90
Posizionare l'utensile	0,20
Regolare l'utensile	0,50
Ruotare la torretta portautensili	0,20
Selezionare l'avanzamento automatico	0,18
Selezionare n. di giri	0,18
Smontare il pezzo dall'autocentrante	0,40

Attrezzature	Azione	Tempo standard (min)
Piattaforma autocentrante	Montare	0,6
	Smontare	0,6
	Regolare apertura	0,1

Utensili-Attrezzi	Azione	Tempo standard (min)
Portautensili	Montare e smontare su torretta a serraggio rapido	0,1
Utensile	Montare e smontare su torretta o portautensili	0,5
Portapunta a forare	Montare e smontare su controtesta	0,4
Portautensile	Regolare altezza su torretta a serraggio rapido	0,2
Utensile	Regolare altezza su torretta	0,5
Carrello portautensili	Orientare normalmente Orientare con precisione	0,5 2,7

Tempi

Fase 30 - Fresatura

Tempi attivi → Ta tot = 0,3 min

$$t_a = \frac{L + e}{V_a}$$

L = lunghezza lavorata (per la sfacciatura questa lunghezza equivale alla metà del diametro del pezzo all'inizio della lavorazione, ovvero h)

e = extra corsa (per noi e = 2mm)

Va = velocità di avanzamento

Conclusione

FASE 10 FASE 20 FASE 30 **TOTALE** TEMPI ATTIVI [MIN] 4,55 12,15 16,88 0,3 TEMPI PASSIVI [MIN] 1,75 23,04 76,59 52,96 **TOTALE PER 2000 PEZZI** 1575 130220 46680 178475

Tempi passivi → Tp tot = 23,04 min

Tempi standard per lavorazioni alla fresatrice [min]	Tempo
Allineare morsă	1,5
Avviare/fermare la macchina	0,05
Controllare dimensione con calibro o con micrometro	0,2
Innestare/disinnestare l'avanzamento automatico	0,05
Montare albero portafresa su mandrino della fresatrice orizzontale	6
Montare fresa a codolo e punte a forare su mandrino	2
Montare fresa su albero portafresa (asse orizzontale)	5
Montare fresa su portafresa con attacco a cono (asse verticale)	3
Montare il pezzo nella morsa	5,014.00
Montare portafresa con attacco a cono su mandrino della fresatrice	2
Montare utensile su portautensile	1,2
Montare/smontare contropunta del divisore	2
Montare/smontare divisore	4
Montare/smontare il pezzo con contropunta	1,2
Montare/smontare il pezzo sull'autocentrante del divisore	0,9
Montare/smontare il pezzo sulla tavola con staffe	3
Montare/smontare morsa	3
Montare/smontare punta con menabrida sul divisore	4
Posizionare il pezzo rispetto all'utensile:	
- senza sfioramento (o disimpegnare utensile)	0,2
- con uno sfioramento	1 1
-con due sfioramenti	1,5
- con tre sfioramenti	2
Posizionare una staffa con un tirante	2
Ruotare la testa verticale della fresatrice	2
Ruotare tavola portapezzo	5
Selezionare l'avanzamento automatico	0,18
Selezionare numero di giri	0,18
Smontare il pezzo dalla morsa	0,4

Tempo tot 1 pezzo alla fresa = 23,34 min

Tempo tot 1 albero = 93,47 min

Per realizzare 2000 pezzi l'anno (280 gg lavorativi):

- Operatore 1 → 8h al <u>tornio</u> (al giorno)
- Operatore 2 → 3h tra <u>fresatrice</u> e <u>sega a nastro</u>

Costi

Materiale

- Prezzo per 1 barra = 15,99 €
- Prezzo annuo = 3998 €

Macchinari (tornio, sega a nastro, rettificatrice, fresatrice, morsa)

- Prezzo complessivo = 16159,96 € (2693,32 €/anno ammortizzato in 6 anni)

Utensili

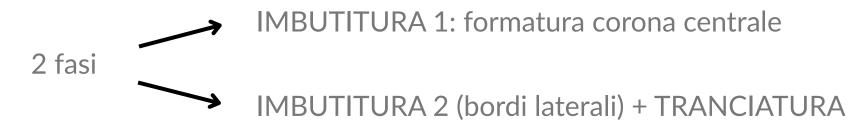
- Prezzo utensili "fissi" = 613,72 € (ammortizzati)
- Prezzo utensili "consumabili" (per 2000 pezzi) = 541,32 €
- Prezzo annuo = **1155,04** €
- Incidenza media su 1 pezzo = 0,58 €

Manodopera

- Prezzo per 1 pezzo = 22 €
- Prezzo annuo (15 €/h x 2975 h) = 44625 €

Energia (potenza macchinari-sega a nastro/tornio/fresatrice-, tempi utilizzo, velocità)

- Consumo energetico per 1 pezzo = 0,368 kWh
- Consumo energetico per 2000 pezzi = 737 kWh
- Prezzo annuo (con costo medio energia = 0,2 €/kWh) = 147,36 €


- Prezzo tot annuo = **35.200,04** €

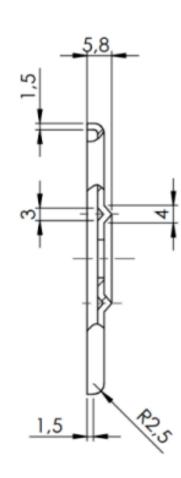
- Prezzo tot **1** pezzo = **17,60**€

6. **DEFORMAZIONE PLASTICA**

Processo

Lamierino di partenza

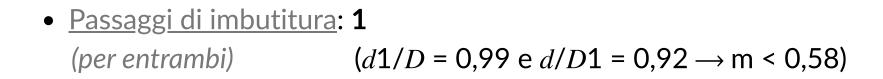
- Materiale: **S315MC** (buona resistenza meccanica e a fatica)
- Dimensioni: **D** = 70,30 mm; **S**pessore = 1,5 mm


Macchinario

AIDA NC1 - Series → pressa meccanica monocolonna a singolo effetto

Caratteristiche: - adatta per lotti medio-piccoli

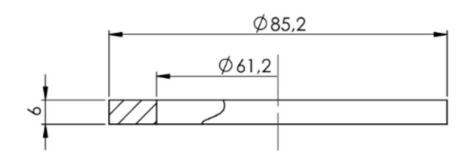
- tempi di cambio stampo contenuti
- Corsa del pistone: 70mm
- Velocità di lavoro: 90 150 colpi/min
- Altezza dello stampo: 200 mm
- Area del banco: 730x310 mm
- Altezza operativa: 800 mm



IMBUTITURA

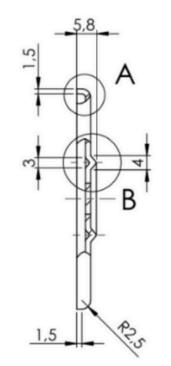
Parametri

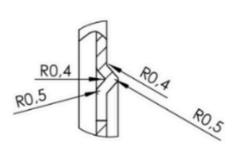
• Premilamiera: $(D - dp > 5s \rightarrow 70,3 - 64 > 7,5)$


• Pressione del premilamiera: P = 2,5 MPa (per acciai) $(per\ entrambi)$ $(p_{min}=R_m\frac{(\beta-1)^2+0,005\cdot\frac{d_1}{s}}{400})$

• Forza di imbutitura: P1 = 59,02 kN ; P2 = 54,29 kN (per entrambi) $(P = \pi \cdot d \cdot s \cdot m \cdot Rm)$

• Raggi di raccordo pezzo: R0,4 mm (interni), R0,5 mm (esterni)


• Sformi: sformo 1° (matrice), 2° (punzone)


Premilamiera per stampo 2

d/D	m	
0,55	1	
0,6	0,86	
0,65	0,72	
0,70	0,60	
0,75	0,50	
0,80	0,40	

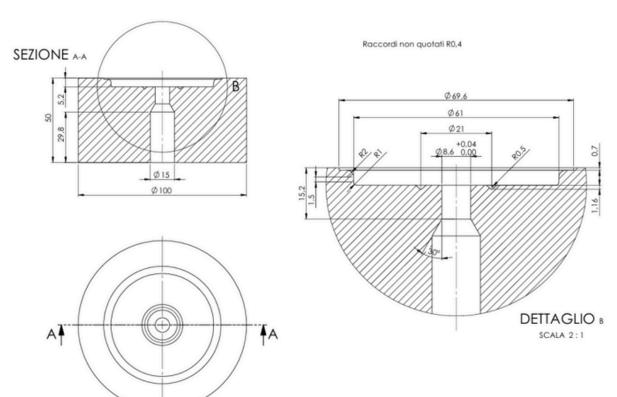
Materiale	la operazione m ₁	Operazioni successive m	
Acciaio			
s < 2 mm	0,58	0,85	
s ≥ 2 mm	0,58	0,85	

DETTAGLIO B

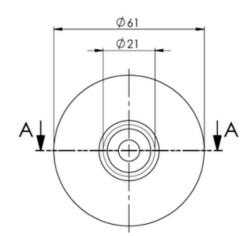
Parametri

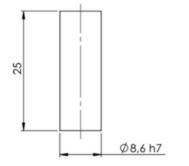
- <u>Raggi arrotondamento punzone</u>: **1 mm** (per stampo 2) (5s < rp < 0,3d)
- Raggi arrotondamento <u>matrice</u>: **2 mm** (per stampo 2) $(rm = K \cdot \sqrt{(D1 d) \cdot s})$
- <u>Lubrificazione</u>: lubrificante a base di **grafite** e **olio**
- Espulsori: 2 non centrali

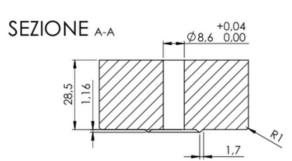
TRANCIATURA


Parametri

- Diametro matrice: 9 mm (foro)
- Diametro punzone: 8,6 mm


(perchè gioco matrice/punzone: $g = 0.007 \cdot s \cdot \sigma_t^{0.5} = 0.2 \text{ mm}$)


• Forza di tranciatura: **18,32 kN** (valore maggiorato del 20% da 15,27 kN) $(P_{max} = l \cdot s \cdot \sigma_t)$


Vista in pianta della matrice

Vista in pianta del <u>punzone da imbutitura</u> (dx) e del <u>punzone da tranciatura</u> (sx):

Raccordi non quotati R0,5

Tempi

Tempi calcolati sulla produzione giornaliera di 10 pezzi (in quanto ogni dieci sostituiamo matrice e punzone).

- Preparazione macchina (setup iniziale): 15 min
- Posizionamento pezzo: 30 s
- Accensione e spegnimento macchina: 3 min
- Imbutitura 1 (stampo 1): 50 s
- Cambio stampo 1 → stampo 2: 15 min
- Imbutitura 2 + tranciatura: 80 s
- Totale tempo macchina attiva: 2 min 40 sec
- Totale tempo operatore: 33 min

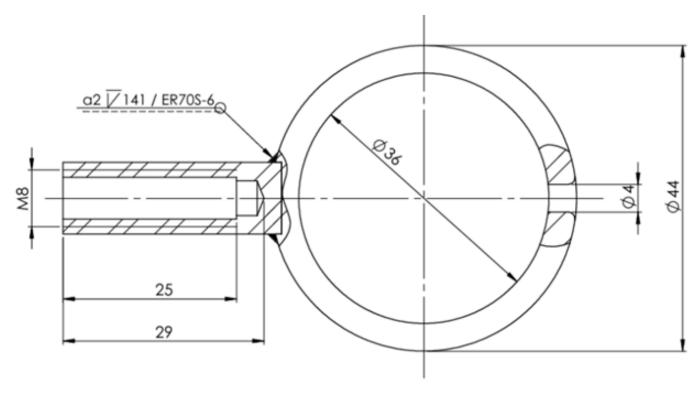
- Tempo totale (10 pezzi) = 38 min 20 s
- Tempo totale (2000 pezzi) = 127 h 47 min
- Tempo totale (1 pezzo) = 3 min 50 s

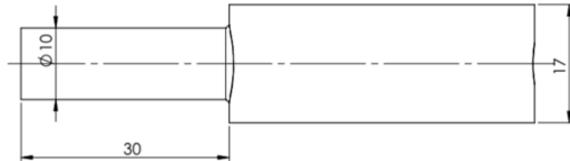
Costi

- Costo macchina: 15000 € (2500 €/anno ammortizzato in 6 anni)
- Costo stampi (in acciaio alto legati al cromo temprabili): 8000 € (1330 €/anno ammortizzati in 6 anni)
- Costo materiale circa: 170 €
- Costo manodopera: 15 €/h

- Costo totale (2000 pezzi) = 5920 €
- Costo totale (1 pezzo) = 3,00 €

7. SALDATURA


Per la realizzazione della biella (componente n.11) è stata scelta una saldatura autogena TIG pulsata a bassa energia, su acciaio AISI 1020. Il disegno è stato modificato per permettere l'operazione, garantendo un giunto resistente anche a sollecitazioni a fatica (a differenza di saldobrasatura e brasatura).


Accorgimenti filettatura

Per proteggere la filettatura da possibili deformazioni in fase di saldatura è stato scelto un inserto pieno in CuCrZr (rame legato):

- Dissipa calore, minore dilatazione termica.
- Riutilizzabile per 100–300 pezzi.
- Pasta antigrippaggio per rimozione facilitata

Scelta macchina e accessori

Saldatrice

- IPOTOOLS TIG 200P AC/DC (499,99 €)
- Funzione TIG pulsata, controllo di corrente di picco/base, frequenza, duty cycle.
- Cordoni sottili (~2 mm) senza deformazioni.
- Memorizzazione parametri → costanza qualitativa in produzione industriale.
- Potenza 1,1 kW

Dati tecnici della saldatrice

> Tipo: Saldatrice inverter TIG ACDCTIG-200P	> Tempo di postflusso del gas: 0-25 s
> Processo: TIG AC/DC, MMA	> Frequenza AC: 20-250 Hz
> Pannello touch: funzione pulsazioni, preflusso gas, postflusso gas, frequenza AC, ecc.	> Effetto pulente: 10-90%
> Impostazioni: continuo digitale	> Discesa: 0-10 sec
> Alimentazione: 1x AC230V 50/60Hz	> Accensione HF: Si
> Tensione a circuito aperto: 80V	> Ventilatore
> Campo di regolazione TIG DC: 5-200 A TIG AC: 20-200 A MMA: 20-160 A	> Diametro elettrodo raccomandato: MMA 1,0-4,0mm / TIG 1,0-3,2mm
> Campo di regolazione AC TIG: 200A/35% / 160A/60% / 130A/100%	> Classe di isolamento: F
> Campo di regolazione MMA: 160A/35% / 130A/60% / 100A/100%	> Grado di protezione della custodia: IP21S
> Connettore: 2 poli (senza opzione pedale)	> Dimensioni (LxPxA): 430x185x320mm
> Frequenza impulsi: 1Hz o 50Hz	> Peso: 19 kg
> Tempo di preflusso del gas: 0-10 s	> Peso netto: 13,5kg

Materiali e accessori

- Elettrodo tungsteno WL20 (2% Lantanio) Ø 1,6 mm → arco stabile anche a basse correnti.
- Gas Argon 99,9% (flusso ~8 L/min) → protezione da ossidazioni/porosità.
- Materiale d'apporto ER70S-6 Ø 1,6 mm → cordone d'angolo con gamba a = 2 mm.

CRITERI DI SCELTA

		Metallo		Stabilità dell'arco	Innesco	Durata	Resistenza termica
Tipo		Leghe leggere	Acciaio Acciaio Inox				
WP	Tungsteno puro	*		**	*	*	*
WC 20	Cerio 2%	*	*	**	*	**	**
WL 10	Lantanio 1%	*	*	**	**	**	**
WL 15	Lantanio 1,5%	*	*	**	**	**	***
WL 20	Lantanio 2%	*	*	***	***	***	***
WS 20	Terre rare 0,8%	*	*	***	***	***	***
WZr 20	Zirconio 0,8%	*		***	**	**	***

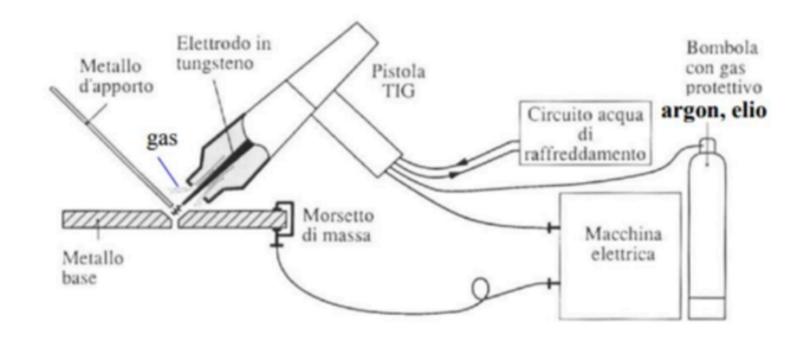
Parametri di saldatura e preparazione del metallo

Scelta dei parametri

Modalità DC pulsata:

• Corrente di picco: 50-70 A

• Corrente di base: 20-30 A


• Frequenza: ~1 Hz

• Duty cycle (tempo corrente di picco): 30–50%

Preparazione del metallo

Prima di eseguire la saldatura il componente deve essere preparato per una migliore adesione, porosità e cricche ridotte.

- Superfici perfettamente pulite (no ossidi, oli o ruggine).
- Sgrassatura con solventi (acetone/alcol).
- Spazzolatura con spazzole inox dedicate.

Tempi e costi

Tempi

- Lunghezza cordone: 31,4 mm (circonferenza Ø10 mm)
- Tempo saldatura singolo pezzo: ~20 s
- Preparazione macchina/pezzo: ~2 min
- Saldatura: 11 h 7 min
- Preparazione macchina/pezzo: 66 h 40 min

Totale (2000 pezzi): 77 h 47 min

Singolo pezzo: 2,3 min

Costi

- Saldatrice TIG: 499,99 €
- Materiale d'apporto (ER70S-6): 21,20 €
- Gas Argon 99,9%: 350 €
- Elettrodi WL20 (7 pz): 10,50 €
- Inserti in rame (15 pz): 15 €
- Energia (stima): consumo medio annuale 83 kW/h ~ 17 €
- Manodopera (77,8 h × 20 €/h): 1555,60 €

Totale annuo: ~2452,29 €

Costo unitario: 1,23 € per biella

GRAZIE

Per l'attenzione