

UNIVERSITÀ DEGLI STUDI DI PISA

INGEGNERIA DELL'ENERGIA A.A. 2024 / 2025

PROGETTO DI TECNOLOGIA MECCANICA: POMPA A INGRANAGGI

STUDENTI

Iacopini Duccio - 660346 Frandi Matilde - 655449

DOCENTI RELATORI

Lanzetta Michele Spigliati Francesco

INDICE

1. INTRODUZIONE E GENERALITÀ

2. COMPLESSIVO

3. PARTICOLARE 7 - CORPO INTERMEDIO

3.0	Disegno tecnico				
3.1	Studio del greggio				
	3.1.1 Piano di divisione				
	3.1.2 Modello e cassa d'anima				
3.2	Studio della solidificazione				
	3.2.1 Moduli di raffreddamento				
	3.2.2 Materozze				
3.3	Sistema di colata				
3.4	Simulazione di colata con software Inspire Cast				
3.5	Analisi dei costi di fusione				
3.6	iferimento superfici				
3.7	Ordine delle fasi				
3.8	Scelta degli utensili e macchine				

4. PARTICOLARE 14 - TAPPO

3.9

- 4.0 Disegno tecnico di partenza
- 4.1 Disegno tecnico con modifiche
- 4.2 Scelta tecnologia di produzione e del materiale

Parametri di taglio per la foratura

- 4.3 Slicing e scelta parametri di stampa
- 4.4 Analisi di tempi e costi

5. PARTICOLARE 5 - ALBERINO

- 5.0 Disegno tecnico
- 5.1 Riferimento superfici
- 5.2 Scelta della successione di fasi e sottofasi
- 5.3 Parco macchine utensili
- 5.4 Scelta degli utensili
- 5.5 Formule generali
- 5.6 Analisi dei tempi
- 5.7 Fogli di ciclo e di fase

6. PARTICOLARE 4 - INGRANAGGIO CONDUTTORE

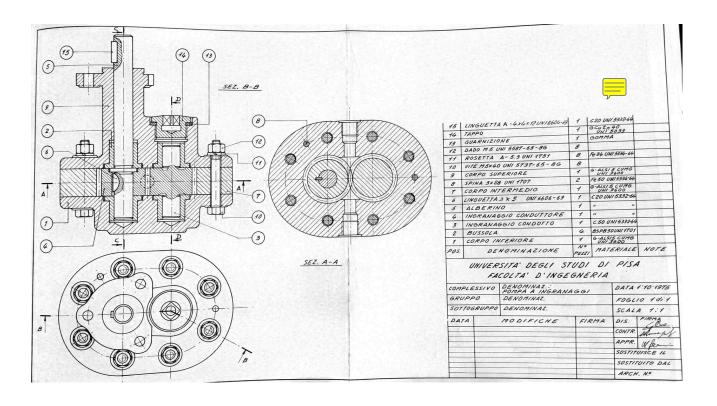
- 6.0 Disegno tecnico
- 6.1 Scelta processo produttivo
- 6.2 Calcolo forza necessaria per l'estrusione

7. SALDATURA

- 7.1 Scelta dei materiali
- 7.2 Scelte progettuali
- 7.3 Scelta della macchina

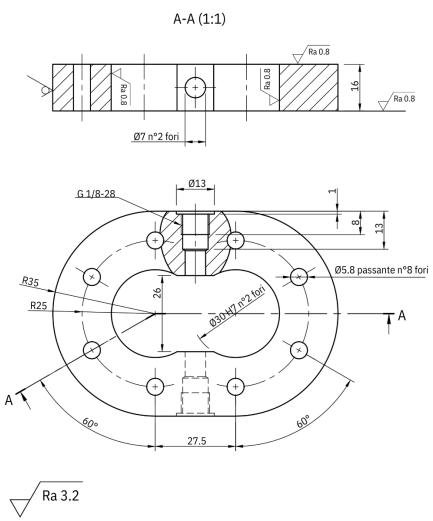
8. BIBLIOGRAFIA

1. INTRODUZIONE E GENERALITÀ


LO SCOPO DEL PROGETTO

In questo progetto proponiamo la realizzazione della pompa a ingranaggi illustrata nel disegno tecnico del complessivo del cap.2.

La finalità di tale progetto è quella di produrre un singolo esemplare, immaginando di essere una piccola azienda che realizza pezzi su commessa, tali considerazioni possono essere generalizzate fino alla produzione di un numero, non superiore a 100.


Con queste premesse proponiamo il nostro studio del complessivo in modo da affrontare tutte le più importanti lavorazioni che possono essere effettuate nel mondo industriale in particolare vedremo il processo di fonderia, stampa 3D, asportazione di truciolo, deformazione plastica, e saldatura, il tutto mantenendo lo sguardo verso il nostro scopo prefissato: produrre uno o pochissimi pezzi al minor costo possibile.

2. COMPLESSIVO

3. PARTICOLARE 7 - CORPO INTERMEDIO

3.0 DISEGNO TECNICO

UNIVERSITÀ DI PISA Scuola di Ingegneria							
Particolare	Particolare n°7	Materiale: G-AlSi5-CuMg	Foglio 1 : 1				
Complessivo	Pompa a i	Scala 1 : 1					
Disegnatori	Iacopin Frandi						

3.1 STUDIO DEL GREGGIO

MATERIALE

Come indicato dal disegno tecnico utilizziamo una lega di alluminio AlSi5-CuMg EN 45300, una lega di Alluminio e Silicio, quest'ultimo la rende molto fluida e ne diminuisce il coefficiente di dilatazione termica, per questo viene ampiamente utilizzata per getti continui in Terra e in Conchiglia, soprattutto grazie alla sua bassa temperatura di fusione.

COMPOSIZIONE CHIMICA %

LEGA			ELEMENTI											
		Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Pb	Sn	Ti	Impurezze singole	lmpurezze globali
EN AB 45300 En 1676:2020	Min	4,5	0	1,0	0	0,40	0	0	0	0	0	0	0	0
	Max	5,5	0,55	1,5	0,55	0,65	0,05	0,25	0,15	0,1*	0,05	0,20	0,05	0,15
EN AC 45300 En 1706:2020	Min	4,5	0	1,0	0	0,35	0	0	0	0	0	0	0	0
	Max	5,5	0,65	1,5	0,55	0,65	0,05	0,25	0,15	0,1*	0,05	0,25	0,05	0,15

*Limite interno Raffmetal (le norme Europee riportano Pb = 0,15% max)
NOTA: Le impurezze singole includono i limiti di tutti gli elementi non riportati sulla seguente tabella.

PROPRIETÀ MECCANICHE

(Proprietà meccaniche rilevate su provette colate a parte alla temperatura ambiente di +20°C)

PROCESSO DI COLATA (condizione)	STATO FISICO DI COLATA	Rm Carico unitario di rottura EN 1706:2020 MPa	Rp02 Carico al limite di snervamento EN 1706:2020 MPa	A Allungamento EN 1706:2020	HB Durezza Brinell EN 1706:2020 HBW	R Fatica* Restistenza a Fatica EN 1706:2020 MPa
IN SABBIA	T4	170	120	2	80	70 - 100
IN SABBIA	Т6	230	200	<1	100	70 - 100
IN CONCHIGLIA	T4	230	140	3	85	70 - 100
IN CONCHIGLIA	Т6	280	210	<1	100	70 - 100

*Valori per test in condizioni di flessione rotante fino a 107 cicli (curva di Wöhler)

PROPRIETÀ FISICHE

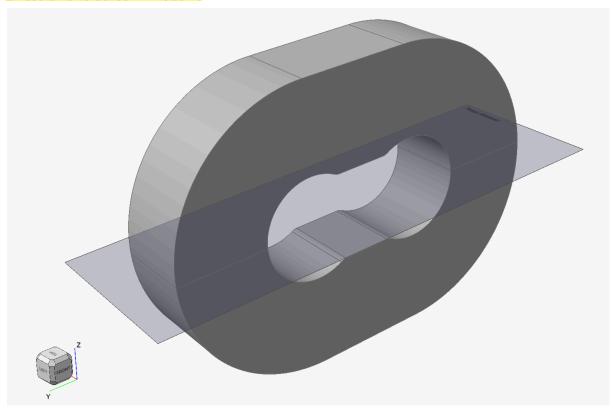
FRUTRILIA FIGURE
(Le seguenti proprietà sono influenzate dalla variazione di composizione chimica all'interno della specifica, dalla struttura metallurgica, dall'integrità del getto e dalle condizioni di colata, pertanto i valoti riportati sono inidicativi

PESO SPECIFICO	2,67 Kg/dm ³
CALORE SPECIFICO (a 100 °C)	0,92 J/gK
MODULO ELASTICO	72 GPa

CONDUTTIVITÀ ELETTRICA	EN 1706:2020	19 - 23 MS/m
CONDUTTIVITÀ TERMICA	EN 1706:2020	140 - 150 W/(m K)
DILATAZIONE TERMICA (da 20° C a 100° C)	EN 1706:2020	22·10 ⁻⁶ /K

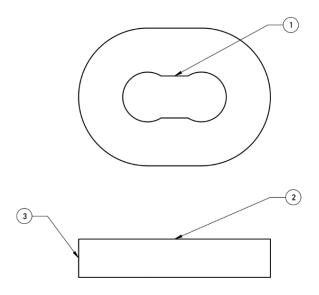
CARATTERISTICHE TECNOLOGICHE

(Indicazioni qualitative tratte dalla normativa EN 1706:202

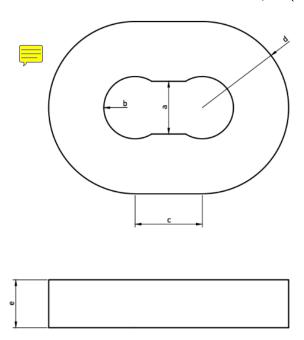

COLABILITA'	С
RESISTENZA ALLA CRICCATURA DI RITIRO	В
TENUTA A PRESSIONE	С
LAVORABILITÀ ALL' UTENSILE (grezzo)	В
LAVORABILITÀ ALL' UTENSILE (dopo trattamento termico)	В
RESISTENZA GENERALE ALLA CORROSIONE	D

ATTITUDINE ALL'ANODIZZAZIONE DECORATIVA	D
SALDABILITÀ	С
LUCIDABILITÀ	В
RESISTENZA MECCANICA A TEMPERATURA AMBIENTE	В
RESISTENZA MECCANICA A CALDO (200°C)	В
DUTTILITÀ	В

A: OTTIMA, B: BUONA, C: MEDIA, D: SUFFICIENTE, E: SCARSA, F: NON SUFFICIENTE

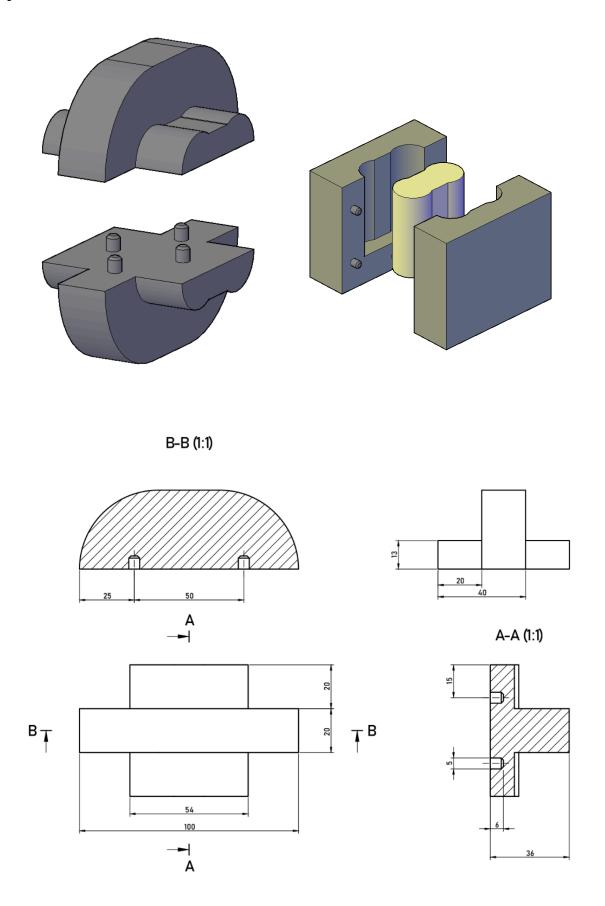

3.1.1 PIANO DI DIVISIONE

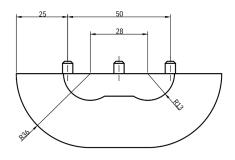
Scegliamo questo piano di divisione per gestire al meglio le problematiche dovute all'estrazione dei semi modelli.

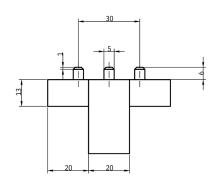

3.1.2 MODELLO E CASSA D'ANIMA

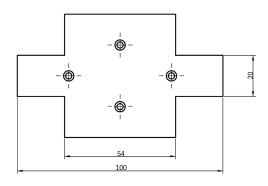
Il modello ci permette di creare la forma desiderata nel nostro mezzo transitorio. La scelta del materiale, ovvero legno verniciato, è data dal suo basso costo e semplicità produttiva. Partendo dal pezzo finito abbiamo semplificato la geometria e inserito tutti gli elementi necessari a garantire un corretto processo di fusione e a contrastare i difetti tipici di quest'ultimo.

LE NOSTRE SCELTE PROGETTUALI:

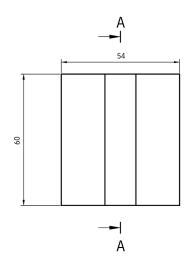

- **Sovrametallo**: Per permettere le successive lavorazioni per asportazioni di truciolo, al fine di ottenere la rugosità specifica, abbiamo inserito un sovrametallo di 2 mm (da tabella) sulle superfici 1 e 2.
- Angolo di sformo: La corretta estrazione del modello dalla terra sintetica è data dalla presenza di un angolo di sformo di 1º (da tabella).
- **Fenomeno del ritiro**: Per ottenere le dimensioni corrette alla fine della solidificazione abbiamo considerato un coefficiente di ritiro lineare del 1,6% (da tabella).

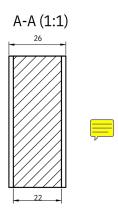


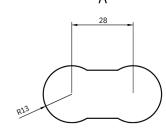

dimensioni	valore [mm]	valore con sovrametallo [mm]	valore con coefficiente [mm]	valore per semi modelli [mm]
a	26,0	22,0	21,648	22,0
ь	15,0	13,0	12,792	13,0
С	27,5	27,5	27,940	28,0
d	35,0	35,0	35,560	36,0
е	16,0	20,0	20,320	20,0

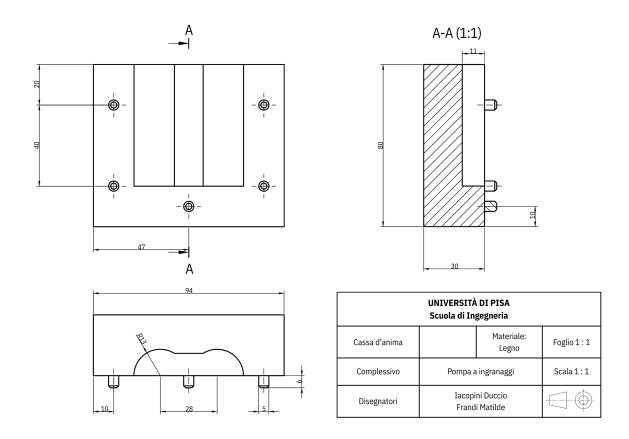

• Sede dell'anima: Al fine di ottenere il foro centrale il modello presenta la sede dell'anima compresa delle sue portate.

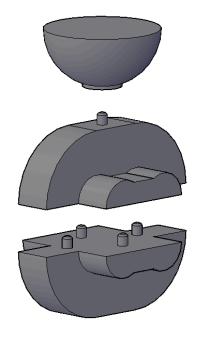
L'anima è pensata dello stesso materiale del mezzo transitorio. La sua geometria è ottenuta pressando terra sintetica all'interno della cassa d'anima.







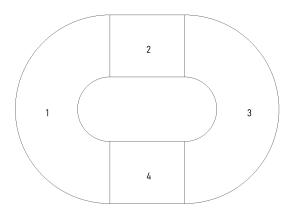

UNIVERSITÀ DI PISA Scuola di Ingegneria							
Semimodello inferiore	Materiale: Foglio 1 : 1						
Complessivo	Pompa a	Scala 1 : 1					
Disegnatori	Iacopi Frand						



UNIVERSITÀ DI PISA Scuola di Ingegneria						
Anima	Materiale: Foglio 1 : 1					
Complessivo	Pompa a	Scala 1 : 1				
Disegnatori	Iacopi Frand					

Il nostro modello è scomposto in due semi modelli lungo il piano di divisione da noi scelto. Il corretto allineamento tra questi è dato dalla presenza di 4 spine.

Nel successivo paragrafo "3.2 Studio della solidificazione" si osserverà la necessità di una materozza, anch'essa elemento del modello.



3.2 STUDIO DELLA SOLIDIFICAZIONE

Definito il modello e le altre componenti facciamo l'analisi della solidificazione attraverso un metodo analitico (calcolo dei moduli di raffreddamento) e simulazioni con software Inspire Cast.

3.2.1 MODULI DI RAFFREDDAMENTO

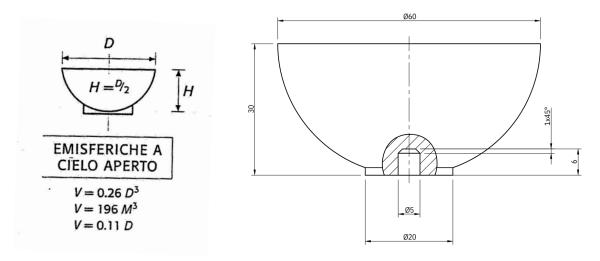
Come prima cosa scomponiamo il nostro greggio in forme elementari per poterne calcolare i moduli di raffreddamento. In questo modo possiamo definire la direzione di solidificazione.

Usando il modello matematico M=V/S con M modulo, V volume ed S superficie otteniamo

$$M1 = M3 = 3,65 \text{ mm}$$
;

$$M2 = M4 = 5,35 \text{ mm};$$

Dunque osserviamo che M2/M1≈1,5 questo ci mostra che la solidificazione parte da 1 e 3 e termina in 2 e 4. Questo implica avere dei problemi di porosità, soprattutto in 2 e 4.


3.2.2 MATEROZZE

Per contrastare i problemi legati alla solidificazione optiamo per l'inserimento di una materozza. Questa viene posizionata sulla superficie 3 in corrispondenza del volume 2. Il suo scopo è di essere un serbatoio di metallo liquido che, solidificandosi per ultimo, garantirà l'eliminazione della porosità nel nostro pezzo.

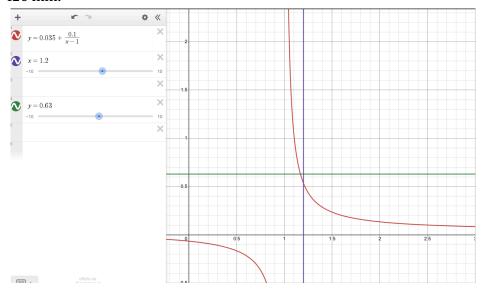
Abbiamo scelto una materozza emisferica a cielo aperto.

Per garantire che questo elemento sia l'ultimo a solidificare si considera $M_m=1.2\cdot M$ dunque $M_m=6.4~mm$.

Dalle relazione in figura qua sotto a sinistra otteniamo le dimensioni indicate nella figura a destra.

Per verificare il corretto dimensionamento della materozza usiamo il metodo di Caine. Bisogna assicurarsi che i valori di X e Y nel nostro caso siano a destra della curva di equazione:

$$y = 0.035 + \frac{0.1}{x-1}$$


Con X = Mm/Mp e Y = Vm/Vp

I nostri valori sono:

- $M_m = 1.2 \cdot M_p = 6.4 \,\mathrm{mm}$
- $M_p = 5.35 \,\mathrm{mm}$
- $V_m = 196 \cdot M_m^3 = 58950 \, mm^3$
- $V_p = 93\ 221.\ 2\ mm^3$

Dunque dai nostri calcoli otteniamo A(1,25; 0,63)

Inoltre ci chiediamo quale sia il raggio di influenza e il massimo volume alimentabile dalla materozza dal momento che abbiamo sia 2 che 3 che presentano problemi di solidificazione. Il raggio di influenza si definisce dalla relazione $R=k\cdot S$, con k=6 e S=20 mm. Quindi R=120 mm.

3.3 SISTEMA DI COLATA

Nel nostro processo di fusione per gravità a sorgente abbiamo inserito un solo punto di iniezione laterale in corrispondenza del piano di divisione.

Per il dimensionamento del sistema di colata ci basiamo sulla relazione del tempo di colata:

$$T = 3, 2 \cdot \sqrt{G}$$

con T il tempo di colata, s lo spessore medio e G il peso del getto in kg.

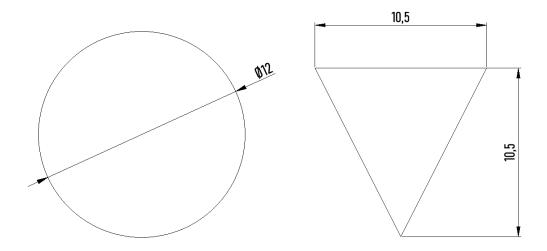
Nel nostro caso:

-
$$V_{tot} = V_{pezzo} + V_{materozza} = 93\ 221.\ 2 + 51\ 863.\ 4 = 145\ 084.\ 6\ mm^3 = 0.\ 145\ dm^3$$

$$- \rho = 2.67 \, Kg/dm^3$$

$$G = \rho \cdot V_{tot} = 0.39 \, Kg$$

Quindi Tè circa 2 s


Attraverso questo valore posso definire la sezione complessiva degli attacchi $S = \frac{K}{v \cdot 0}$

con K=G/T la portata complessiva degli attacchi e $v=\sqrt{2\cdot g\cdot h}$ la velocità della vena fluida. Dove g è la costante di gravità e h il dislivello di colata che nel nostro caso assume il valore di 100 mm ovvero l'altezza della staffa superiore.

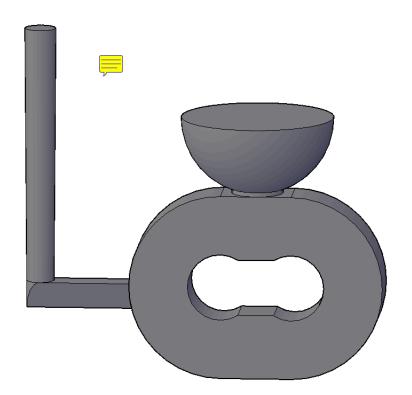
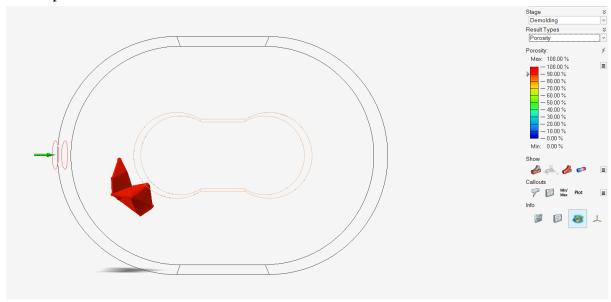
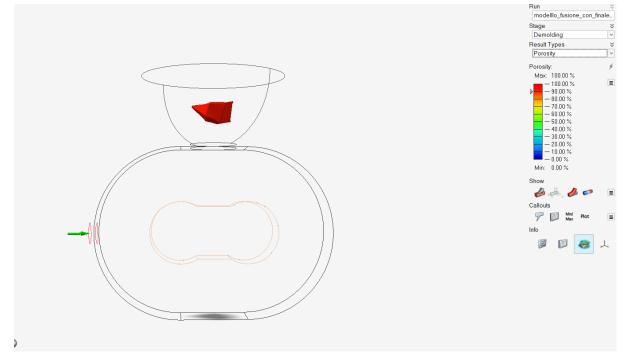

Otteniamo una velocità di v=1.4 m/s. La portata K=0.19 Kg/s Quindi la nostra sezione risulta essere di 52 mm^2 .

Tabella riassuntiva con i valori ottenuti:

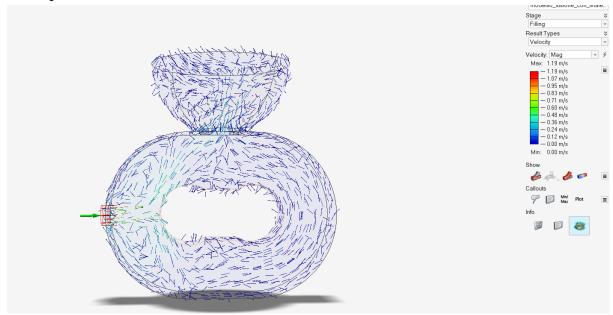
G	0,38715	kg
Т	1,991084127	S
K	0,1944418093	kg/s
v	1,400714104	m/s
	0,000051991086	
S	17	m^2
S	51,99108617	mm^2



Quindi il nostro sistema di colata risulta come in figura:



3.4 SIMULAZIONE DI COLATA CON SOFTWARE INSPIRE CAST


Per l'analisi del riempimento e solidificazione abbiamo utilizzato il software "Inspire Cast". Inizialmente abbiamo fatto una simulazione senza materozza per osservare il comportamento della solidificazione. Abbiamo trovato riscontro con i calcoli che abbiamo svolto, infatti vi è un elevata porosità.

Dunque abbiamo inserito la materozza e abbiamo avuto conferma che il nostro dimensionamento fosse corretto, infatti la materozza è l'ultimo volume a solidificare quindi la porosità si trova solo in essa.

Inoltre è stata fatta un analisi della velocità del fluido in questo ultimo caso descritto. Questo per garantire che non ci fosse moto turbolento che potesse provocare danni alla struttura del nostro pezzo.

3.5 ANALISI DEI COSTI DI FUSIONE

Nell'analisi dei tempi possiamo osservare che il tempo di riempimento è trascurabile mentre ha un ruolo importante quello della formatura in sabbia che è circa 20 minuti.

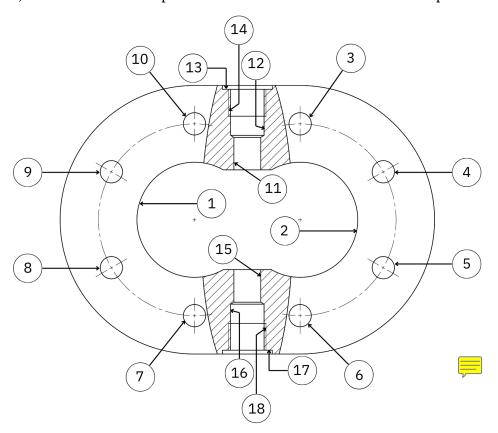
I costi economici per il nostro pezzo sono legati al materiale di fusione, dunque l'alluminio, la terra da fonderia e la manodopera.

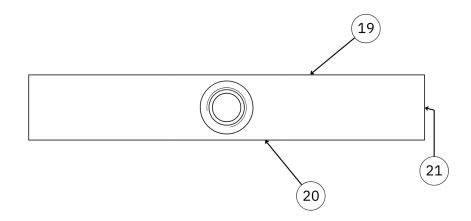
Il costo al Kg dell'alluminio è in media sui 2,32 €/Kg. Nel nostro caso è di 0,9 €(inclusa la materozza che però è materiale che si può recuperare).

Il costo della terra da fonderia si aggira attorno ai 0,5 €/Kg.

Sapendo che le dimensioni della staffa superiore sono 250x315x100 e quella inferiore

250x315x50, il volume occupato è di 11 655 455,4 mm^3 . La densità della terra è di 1260 kg/ mm^3 il costo risulta essere 7,4 €.


Per la manodopera sono 25 €/h quindi 8,25 €.


Complessivamente 16,55 €.

3.6 RIFERIMENTO SUPERFICI

Passiamo adesso alle lavorazioni meccaniche per asportazione di truciolo per ottenere il pezzo finito. Sotto, il riferimento delle superfici che verrà utilizzato nel successivo capitolo 3.7.

3.7 ORDINE DELLE FASI

10. PULIZIA DEL GREZZO

Utilizziamo una sega a nastro per asportare la materozza e il canale di colata.

20. FRESATURA

Come attrezzature utilizziamo una morsa sulla superficie (21) e dei blocchetti normati per sollevare il pezzo dal banco della fresa, in modo da non recare danni a quest'ultimo dovendo effettuare una fresatura passante per tutto il pezzo.

- a. Spianatura superficie (19)
- **b.** Lavorazioni superficie (20) e superficie interna (1) e (2)
 - Spianatura superficie inferiore
 - Fresatura periferica in opposizione superfici interne (1) e (2), effettuando due passate: una di sgrossatura, per eliminare le bave di fusione, e una di finitura per portare il diametro interno a Φ 29.5
 - **Alesatura a mano** Φ 30 H7 delle superfici (1) e (2). Utilizzare un lubrificante.

Utilizzare un calibro corsoio per assicurare l'effettiva riuscita delle lavorazioni di fresatura per l'altezza nominale di 16 mm, inoltre sfruttare un calibro passa-non-passa per verificare la correttezza dimensionale dei due fori Φ 30 H7.

30. FORATURA

Come attrezzature utilizziamo sempre la morsa che blocca la superficie (21) e dei blocchetti normati per sollevare il pezzo dal banco.

a. Lavorazione superficie (3)

Mettiamo il pezzo in orizzontale, appoggiandolo la superficie (20) a tre blocchetti normati di uguale altezza, quindi blocchiamo questo tramite la morsa facendo presa sulla superficie (21).

- **Centratura** con punta da centri
- Foratura

Non sarà necessario procedere con l'allargatura in quanto la funzionalità di questo foro passante è unicamente per il passaggio di una vite.

Ripetere questi processi per le superfici (4), (5). (6), (7), (8), (9) e (10).

b. Lavorazione superfici (11), (12), (13) e (14)

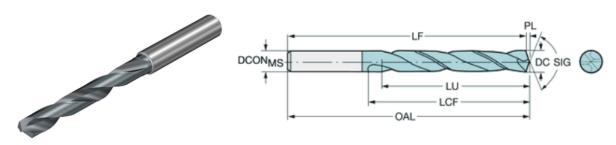
Ruotiamo il pezzo e lo blocchiamo come per la sottofase a.

- Centratura
- Foratura (11): creiamo il foro di diametro Φ 7
- Allargatura (12): Allarghiamo il foro da Φ 7 a Φ 8.8, cioè creiamo il nocciolo base per la filettatura.
- Svasatura cilindrica (13)
- Filettatura a mano (14): Necessario è l'utilizzo di un lubrificante.

3.8 SCELTA DEGLI UTENSILI E MACCHINE

Ci occuperemo in questo capitolo della foratura, in quanto la fresatura verrà affrontata nel capitolo 5.

ALESATORE A MANO GÜHRING Φ30 H7



PUNTA A CENTRARE GÜHRING

D nominale: Φ 1.6 mm D codolo: Φ 4 mm Materiale: HSS Forma: A

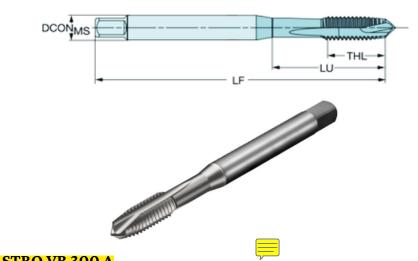
PUNTA ELICOIDALE Φ5.8

Diametro punta (DC): Φ 5.8 mm Diametro codolo (DCONMS): Φ 6 mm Lunghezza utile (LU): 18.4 mm

PUNTA ELICOIDALE Φ7

Diametro punta (DC): Φ 7 mm

Diametro codolo (DCONMS): $\Phi 8 \text{ mm}$ Lunghezza utile (LU): 22.02 mm


PUNTA ELICOIDALE Φ 8.8 (diametro nocciolo per foratura)

Diametro punta (DC): Φ 8.8 mm

Diametro codolo (DCONMS): Φ 10 mm

Lunghezza utile (LU): 26.89 mm

MASCHIO G1/8 in HSS

SEGA A NASTRO VB 300 A

AREA UTILE DI LAVORO

Dimensioni tavola: 500 mm x 400 mm x 890 mm

CAPACITÀ DI TAGLIO

Altezza x sbalzo: 185 mm x 310 mm Velocità di taglio: 10 - 180 m/min

POTENZA AZIONAMENTO

0.55 KW

TRAPANO A COLONNA KB 20 SV

AREA UTILE DI LAVORO

Capacità di foratura: Φ 20 mm Corsa canotto: 135 mm

VELOCITÀ DISPONIBILI

205 - 2045 giri/min

POTENZA DI AZIONAMENTO

1.1 KW

3.9 PARAMETRI DI TAGLIO per la FORATURA

FORMULE GENERALI

• Parametri di taglio:

$$\begin{aligned} & \text{Avanzamento: } a \text{ [mm/giro] ;} \\ & \text{Velocit\`a di taglio: } V_{_T} \text{ [m/min] ;} \end{aligned}$$

• Relazione tra la velocità di taglio (V_T) e la velocità di rotazione (n)

Poiché
$$V_T = \frac{\pi \cdot D \cdot n}{1000} \text{ [m/min]};$$
 Ricaviamo dunque $n = \frac{1000 \cdot V_T}{\pi D} \text{ [giri/min]};$

• Calcolo approssimativo della potenza di taglio necessaria

Calcoliamo prima la coppia necessaria
$$C = \frac{p_t \cdot a \cdot D^2}{8000} [\text{N m}];$$
 Dunque la potenza $P = \frac{2\pi n \cdot C}{60 \times 10^3} [\text{KW}];$

FASE 30. FORATURA

a. Lavorazione superficie (3)

- Centratura con punta da centri:

$$V_T = 10 \text{ m/min};$$
 dunque $n = 1990 \text{ giri/min};$ $a = 0.03 \text{ mm/giro};$

- Foratura Φ 5.8 mm

$$V_T = 35 \text{ m/min}$$
; dunque $n = 1920 \text{ giri/min}$; $a = 0.18 \text{ mm/giro}$; $P = 0.012 \text{ KW}$;

Questi parametri di taglio sono pensati anche per le lavorazioni per le superfici (4), (5), (6), (7), (8), (9) e (10).

b. Lavorazione superfici (11), (12), (13) e (14)

- Centratura

Con stessa punta e stessi parametri di taglio

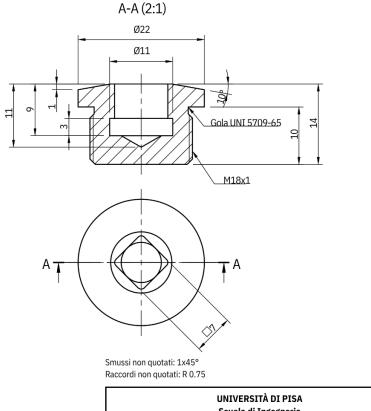
- Foratura $\Phi 7$

$$V_T = 40 \text{ m/min}$$
; dunque $n = 1819 \text{ giri/min}$; $a = 0.18 \text{ mm/giro}$; $P = 0.012 \text{ KW}$;

- Allargatura $\Phi 8.8$

$$V_{_T} = 40 \, \mathrm{m/min}$$
 ; dunque $n = 1447 \, \mathrm{giri/min}$;
 $a = 0.5 \, \mathrm{mm/giro}$;

- Filettatura a mano G 1/8


Data la delicatezza della filettatura a mano si rende necessario l'utilizzo di un lubrificante

Questi parametri di taglio sono pensati anche per le lavorazioni per le superfici (15), (16), (17) e (18).

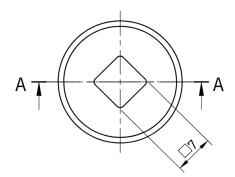
4. PARTICOLARE 14 - TAPPO

Il presente elaborato descrive il processo di progettazione e realizzazione del particolare n°14, utilizzando la tecnologia di manifattura additiva. L'obiettivo è produrre un componente funzionale, in un contesto di laboratorio con basse tirature, ottimizzando tempi, costi e qualità.

4.0 DISEGNO TECNICO DI PARTENZA

	/ERSITÀ DI PIS ola di Ingegneri		
Particolare	Particolare n°14	Materiale: G-CuZn40	Foglio 1 : 1
Complessivo	Pompa a i	ngranaggi	Scala 2 : 1
Disegnatori	Iacopin Frandi	i Duccio Matilde	


Originariamente il pezzo era realizzato a partire da un grezzo di G-CuZn40 UNI 50338 e sottoposto a lavorazioni al tornio. A causa del cambiamento del processo di produzione si rendono possibili delle modifiche per semplificare il modello. Ecco i cambiamenti del pezzo:


- 1) Il foro interno non è realizzato tramite una punta elicoidale, perciò non sarà presente il classico cono di 118°.
- 2) Poiché il foro quadrato non è realizzato tramite asportazione di truciolo non è necessaria la gola di scarico.

- 3) Non è necessaria la realizzazione della parte superiore del tappo tronco conica con angolazione di 10°. Dunque sarà sufficiente un semplice smusso.
- 4) Aumentiamo il passo della filettatura da M18x1 a M18x1.5 per ottenere un dente più grande e quindi ottenere una finitura relativa migliore. La tenuta è comunque garantita dall'anello elastico alloggiato nella gola.

4.1 DISEGNO TECNICO CON MODIFICHE

A-A (2:1)

Smussi non quotati: 1x45° Raccordi non quotati: R 0.75

	/ERSITÀ DI PIS ola di Ingegneri		
Particolare	Particolare n°14	Materiale: PETG	Foglio 1 : 1
Complessivo	Pompa a i	Pompa a ingranaggi	
Disegnatori	•	i Duccio Matilde	

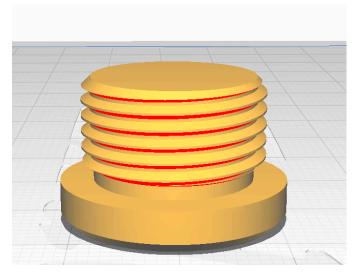
4.2 SCELTA DELLA TECNOLOGIA DI PRODUZIONE E DEL MATERIALE

È stata scelta la tecnologia FDM (Fused Deposition Modeling) e non la MSLA (Masked StereoLithography Apparatus) per i seguenti motivi:

- Maggiore facilità di stampa.
- Versatilità delle macchine per FDM e maggiore reperibilità di parti di ricambio.
- Compromesso tra costi contenuti e libertà geometrica.
- Possibilità di iterazione rapida su prototipi per ottimizzare la geometria.

Per tale processo si consiglia l'utilizzo della stampante Mavis della Kentstrapper, un investimento non necessario per questo specifico pezzo, ma una macchina versatile risulta sempre utile in un laboratorio, per cui un investimento importante potrà essere ammortizzato per gli anni di utilizzo.

Ora che abbiamo definito la tecnologia produttiva passiamo alla scelta del materiale. Per questo pezzo dobbiamo tener conto di alcuni fattori:


- Facilità di stampa: poiché abbiamo deciso di metterci nei panni di una piccola azienda che realizza pezzi su commessa, è bene scegliere processi produttivi semplici e versatili che non richiedano macchine non troppo specifiche.
- Resistenza a usura meccanica: il nostro pezzo non deve resistere a grossi sforzi meccanici ma deve essere resistente all'usura da avvitamento e svitamento, oltre all'inserimento della chiave quadrata.
- Resistenza chimica: il campo di applicazione della pompa a ingranaggi è invaso da agenti chimici corrosivi come benzine, olii e grassi lubrificanti. Il pezzo deve resistere a questi elementi.
- Buona tenuta tra layer: questo assicurerà una buona resistenza del tappo al tempo.

Il miglior compromesso per questi punti è dato dal PETG.

Abbiamo scartato ABS e NYLON, nonostante l'elevata resistenza meccanica, e il PP, nonostante la migliore resistenza chimica, a causa della loro difficoltà di stampa tra cui le elevate temperature di fusione e fumi tossici, come nel caso dell'ABS.

4.3 SLICING E SCELTA PARAMETRI DI STAMPA

Utilizziamo il software di slicing Cura, una volta importato il nostro modello 3D come .3MF procediamo a ruotare il pezzo di 180°, in modo da avere la flangia del tappo come superficie di appoggio del pezzo, come in figura qui sotto.

Questa configurazione darà maggiore stabilità al pezzo durante la stampa, oltre che a darci la possibilità di escludere i filetti nella generazione dei supporti. L'unica parte da supportare rimane dunque la parte finale, piatta, del foro cieco quadrato.

Occorre fare delle precisazioni per la scelta dei parametri:

• Altezza layer: 0.12 mm,

Il più fine possibile. Questa scelta è dovuta alla necessità di mantenere una qualità molto alta per ottenere una filettatura di qualità sufficiente.

• Spessore delle pareti: 1.6 mm, 4 filamenti adiacenti,

Ciò assicura una sufficiente rigidità meccanica.

• Riempimento del 20%,

Sempre per ottenere una qualità meccanica sufficiente.

• Temperature di stampa: ugello: 240°C, piatto: 70°C

• Velocità ugello: 50 mm/s, ai bordi: 25 mm/s,

Una stampa più lenta permette una maggior precisione dimensionale, ottimo quindi per la stampa dei filetti.

• Velocità ventola di raffreddamento: 40%,

Questo evita il raffreddamento eccessivamente rapido del filamento appena depositato, eliminando quindi possibili cracking dei layer o mancata adesione tra questi.

• Supporti: generati solo per il foro quadrato interno,

Non supportiamo la stampa dei filetti in quanto non eccedono un overhang angle di 45°, inoltre tali supporti andrebbero a rovinare la qualità superficiale dei filetti.

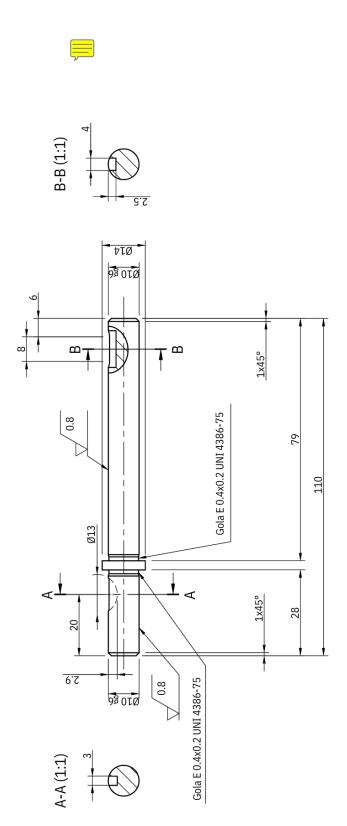
• Nessun piatto di adesione,

La superficie del tappo è sicuramente sufficiente a garantire la stabilità del pezzo durante la stampa.

4.4 ANALISI DI TEMPI E COSTI

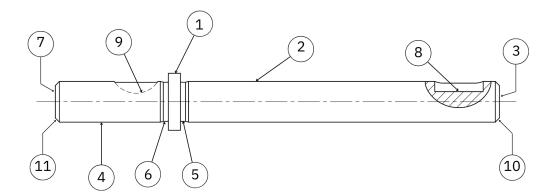
Cominciamo con l'analisi dei tempi.

Tempo attivo di stampa	45 min
Preparazione e pulizia stampante	10 min
Pulizia pezzo finito	5 min
Tempo totale di esecuzione	60 min


Grazie alla stima dei tempi riusciamo a calcolare la stima dei costi a cui aggiungiamo un cautelativo 5%.

	Prezzo medio	Quantità	Costo finale
Materiale: PETG	25 [€/Kg]	3 [g]	0.075 [€]
Energia elettrica	0,166 [€/KWh]	500 [W] x 45 [min]	0.062 [€]
Tempi passivi	25 [€/h]	15 min	6.250 [€]
Costo totale (+5%)	-	-	6.70 [€]

Da questi risultati capiamo la notevole versatilità e convenienza della produzione per stampa 3D, chiaramente per piccoli volumi produttivi.


5. PARTICOLARE 5 - ALBERINO

5.0 DISEGNO TECNICO

	UNIVERSITÀ DI PISA Scuola di Ingegneria	NDI PISA gegneria	
Particolare	Particolare n°5	Materiale: C50E EN 10083-2	Foglio 1:1
Complessivo	Ротра а	Pompa a ingranaggi	Scala 1:1
Disegnatori	Iacopi Frand	Iacopini Duccio Frandi Matilde	

5.1 RIFERIMENTO SUPERFICI

5.2 SCELTA DELLA SUCCESSIONE DI FASI E SOTTOFASI

Partiamo da un grezzo standard di lunghezza 6 metri e diametro Φ 16 mm, ovviamente di acciaio C50E EN 10083-2.

Indichiamo le fase con i numeri (es: 10, 20, 30, ...), le sottofasi con lettere minuscole (es: a, b, c, ...) mentre le operazioni elementari con semplici elenchi puntati.

10. Taglio grezzo del pezzo

Passiamo dal grezzo di 6 m a pezzi più maneggevoli di 150 mm, sarà sufficiente un taglio con una smerigliatrice con adeguato disco da taglio.

20. Lavorazioni di TORNITURA

a. Riferimento superficie (7)

Fissiamo il grezzo da destra con la piattaforma autocentrante a tre griffe dunque effettuiamo le lavorazioni che seguono:

- **Troncatura**: per la definizione della superficie (7) e della lunghezza nominale del pezzo.
- **Centratura**: definiamo dunque la coassialità del pezzo.

b. Riferimento superficie (3)

Giriamo dunque il pezzo e lo fissiamo con la stessa piattaforma a griffe ed effettuiamo le due stesse lavorazioni:

- Troncatura
- Centratura

Particolare attenzione va posta non solo alla centratura del pezzo, che ci garantirà la coassialità di questo per le lavorazioni future, ma anche alla seconda troncatura, la quale ci deve garantire la lunghezza nominale di 110 mm del pezzo.

c. Lavorazione superficie (1)

Fissiamo il pezzo al tornio con punta e contropunta, modo da poter lavorare l'intero pezzo. Con questa operazione ci assicuriamo di eliminare eventuali difetti di produzione del tondo, dunque:

- **Sgrossatura**: passiamo da Φ 16 a Φ 14.2 mm.

d. Lavorazione superficie (2), (5) e (10)

Fissiamo la superficie (4) con la piattaforma autocentrante e la (3) con la contropunta.

- **Sgrossatura superficie (2)**: passiamo da Φ 14.2 a Φ 10.2 in una passata, lasciamo del sovrametallo per effettuare la successiva rettifica.
- Esecuzione gola E 0.4x0.2 UNI 4386-75, superficie (5)
- Esecuzione smusso 1x45°, superficie (10)

e. Lavorazione superfici (4), (1), (6), (11)

Fissiamo il pezzo dx con la piattaforma autocentrante e il sx con la contropunta.

- Sgrossatura superficie (4): passiamo da Φ 14.2 a Φ 10.2 in una passata, lasciamo del sovrametallo per effettuare la successiva rettifica.
- **Finitura superficie (1)**: dal diametro Φ 14.2 a Φ 14 nominale.
- Esecuzione gola E 0.4x0.2 UNI 4386-75, superficie (6)
- Esecuzione smusso 1x45°, superficie (11)

Abbiamo finito le lavorazioni al tornio, in quanto è prevista la rettifica delle superfici (2) e (4), dunque non è necessaria la finitura di queste superfici.

Dobbiamo adesso preoccuparci della lavorazione delle cave per le linguette, dunque passiamo alle lavorazioni per fresatura.

30. Lavorazioni di FRESATURA

a. Fresatura cave per linguette

Fissiamo il pezzo con blocchetti a V e una morsa, quest'ultima fissata con staffe al banco della fresa.

- Lavorazione superficie (8): avente la larghezza della cava molto piccola (4 mm) la fresa sarà soggetta a vibrazioni importanti, dunque sarà necessario utilizzare una fresa di diametro più piccolo, specificato nel paragrafo 5.4, in modo da effettuare la lavorazione in più passate: una iniziale di sgrossatura, frontale in discesa e periferica in traslazione. Successivamente sarà necessario portare a misura la larghezza della cava con due passate di finitura con fresatura periferica in discordanza pura.
- **Lavorazione superficie (9)**: utilizziamo una fresa a T di diametro nominale di Φ13 mm.

40. Lavorazioni di RETTIFICA

Operiamo una classica rettifica in tondo esterna per asportare la quantità di sovrametallo richiesta per arrivare alle dimensioni nominali dei diametri, in questo caso Φ 10 g6, con rugosità Ra=0.8 μ m.

- Rettifica superficie (2)
- Rettifica superficie (4)

5.3 PARCO MACCHINE UTENSILI

TORNIO PARALLELO BASIC 170 SUPER PRO

AREA UTILE DI LAVORO:

Distanza tra punte: 1000 mm Φ massimo di tornitura: 354 mm

MANDRINO PRINCIPALE:

70 - 2000 giri/min

AVANZAMENTO

Asse X: 0.0291 - 2.035 mm/giro Asse Z: 0.0406 - 2.842 mm/giro

POTENZA DI AZIONAMENTO:

1.5 KW

FRESATRICE UNIVERSALE VHF 1.1

AREA UTILE DI LAVORO:

Dimensione tavola: 1000 x 240 mm

TESTA DI FRESATURA VERTICALE:

Velocità mandrino: 100 - 2000 giri/min

MANDRINO PER FRESATURA ORIZZONTALE

Velocità mandrino: 60 - 1350 giri/min

VELOCITÀ AVANZAMENTO:

Asse X, Y, Z: 18 - 627 mm/min

POTENZA AZIONAMENTO:

Motore di azionamento verticale: 1.5 KW Motore di azionamento orizzontale: 2.2 KW

RETTIFICATRICE CILINDRICA KNUTH RSM 800

AREA UTILE DI LAVORO:

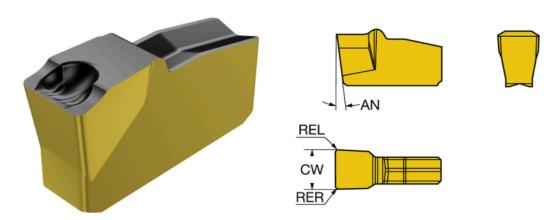
Distanza tra punte: 640 cm Φ massimo: 100 mm

VELOCITÀ DISPONIBILI:

Testa portamandrino: 25 - 380 giri/min Testa portamola: fino a 16000 giri/min

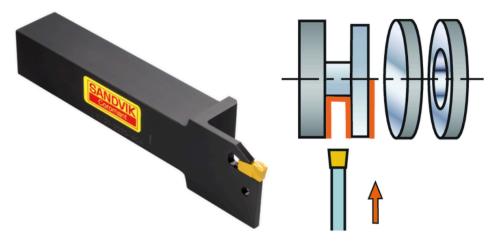
AVANZAMENTO

0.1 - 4 m/min

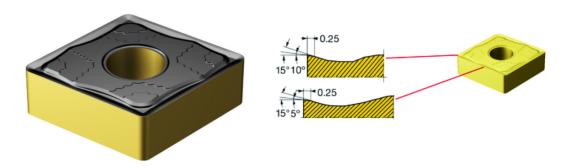

POTENZA DI AZIONAMENTO:

5.6 KVA

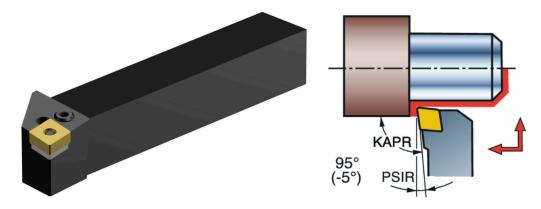
5.4 SCELTA DEGLI UTENSILI


UTENSILE TRONCATORE

• INSERTO: N151.2-300-30-5G 4225

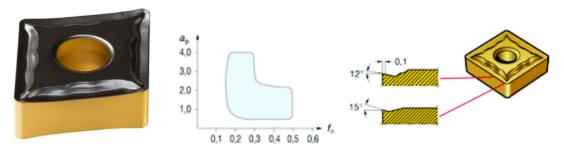

Larghezza di taglio (CW) = 3 mm Raggio di raccordo taglienti (RER, REL) = 0.3 mm Angolo di spoglia inferiore (AN) = 7°

• STELO PORTA UTENSILE: **L151.21-2525-30**


UTENSILE PER SGROSSATURA

• INSERTO: **CNMG 12 04 08 - PMC 4425**

Forma inserto: Rhombic 80 Lunghezza tagliente (LE) = 12.1 mm Raggio di punta (RE) = 0.7938 mm

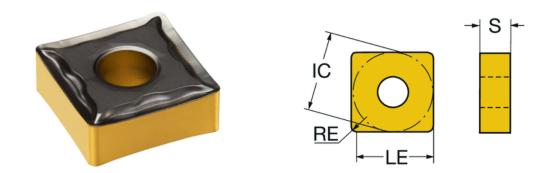

• STELO PORTA UTENSILE: PCLNR 2525M 12

Angolo tagliente principale (KAPR_1) = 95° Angolo di spoglia superiore (GAMO) = -6°

UTENSILE PER FINITURA

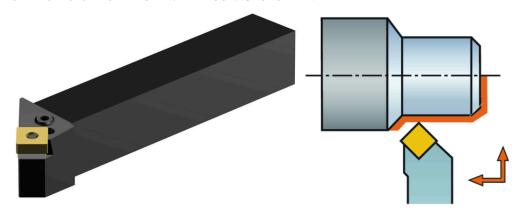
• INSERTO: **CNMG 12 04 08 - MF 4425**

Forma inserto: Rhombic 80 Lunghezza tagliente (LE) = 12.1 mm Raggio di punta (RE) = 0.7938 mm

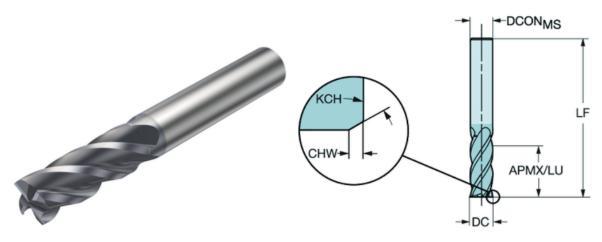

• STELO PORTA UTENSILE: Lo stesso portautensile dell'inserto per sgrossatura

UTENSILE PER GOLE

La gola è stata progettata secondo la normativa UNI 4386-75, ormai in disuso. Inoltre sarebbe risultato molto costoso acquistare l'utensile adatto con la forma della gola specifica. Dunque per ottimizzare i costi, pur mantenendo la funzionalità della gola, abbiamo scelto di utilizzare lo stesso utensile per la troncatura. Il pezzo non risulta indebolito in quanto il raggio di raccordo dell'utensile è di 0.3 mm.


UTENSILE PER SMUSSI 1 x 45°

• INSERTO: **SNMG 12 04 08 - MF 4425**


Forma inserto: Square Lunghezza tagliente (LE) = 11.9 mm Raggio di punta (RE) = 0.7938 mm

• STELO PORTA UTENSILE: PSSNR 2525M 12

Angolo tagliente principale (KAPR_1) = 45° Angolo di spoglia superiore (GAMO) = -8°

FRESA PER CAVA LINGUETTA DI TIPO A: 2P342-0318-PA P2BM

Diametro di taglio (DC) = 3.175 mm Angolo tagliente dell'utensile (KAPR_1) = 90° Profondità di taglio massima (APMX) = 7.938 mm

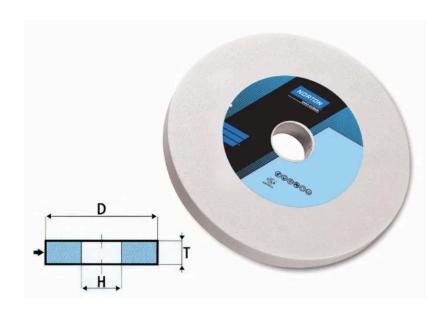
FRESA PER CAVA LINGUETTA AMERICANA

Tipo di articolo: punta per fresa a T

Materiale: acciaio rapido

Forma dell'impugnatura: gambo

dritto


Larghezza della lama: 3 mm Diametro del cerchio esterno: Φ13

mm

Diametro del gambo: Φ 10 mm

Marca: Leroy Merlin

MOLA PER RETTIFICA IN TONDO ESTERNA IN CERAMICA: 38A46-NVS

Diametro esterno: D = 200 mm Diametro interno: H = 32 mm Spessore mola: T = 25 mm

5.5 FORMULE GENERALI

TORNITURA

Parametri di taglio:

Profondità di passata: p [mm];

Avanzamento: a [mm/giro];

Velocità di taglio: V_{T} [m/min];

Relazione tra la velocità di taglio (V_c) e la velocità di rotazione (n)

Poiché

$$V_T = \frac{\pi \cdot D \cdot n}{1000}$$
 [m/min];

Ricaviamo dunque
$$n = \frac{1000 \cdot V_T}{\pi D}$$
 [giri/min];

Calcolo approssimativo della potenza di taglio necessaria

Potenza:

$$P = \frac{F_z \cdot V_T}{60 \times 10^3} \text{ [KW]};$$

Con la forza di taglio: $F_{z} = p_{t} \cdot S$ [N]

con $S = a \cdot p$ la sezione del truciolo;

Pressione di taglio:
$$p_t = p_s \cdot S^{-\frac{1}{n}}$$
 [MPa] con $\frac{1}{n} = 0.197$ per gli acciai;

Pressione specifica di taglio:
$$p_s = 2.4 \cdot R_m^{0.454} \cdot \beta^{0.666} \text{ [daN/mm²]};$$

Con Rm la resistenza a trazione dell'acciaio C50E, pari a 650 daN/mm²,

$$\beta = 90 - (\gamma + \alpha)$$
 l'angolo di taglio dell'utensile.

Rugosità della superficie dopo la lavorazione

 $R_a = \left(\frac{a^2}{32 \cdot r}\right) \times 10^3 \,[\mu\text{m}]$ con r : raggio di raccordo dei taglienti dell'utensile;

• Durata dell'utensile

Dalla relazione generalizzata di Taylor:

$$V_T \cdot T^n \cdot a^m \cdot p^r = V_1^*;$$

Ricaviamo la durata dell'utensile: $T = \left(\frac{V_1^*}{V_r \cdot a^m \cdot p^r}\right)^{\frac{1}{n}};$

$$T = \left(\frac{V_1^*}{V_T \cdot a^m \cdot p^r}\right)^{\frac{1}{n}};$$

 $\operatorname{Con} V_{_{1}}^{^{*}} = 44 \, m/min, \, n = 0.122, \, m = 0.66, \, r = 0.22 \, \operatorname{per} \operatorname{acciai} \operatorname{rapidi} \operatorname{su} \operatorname{acciai};$

FRESATURA

Parametri di taglio

Profondità di passata: p [mm];

Velocità di avanzamento: $V_a = a_{_{\!Z}} \cdot n \cdot Z$ [mm/min]

con $a_{_{Z}}$ [mm] l'avanzamento per dente da scegliere, Z il numero di denti della

fresa;

Velocità di taglio: $V_{_T}$ [m/min];

• Calcolo approssimativo della potenza di taglio necessaria

Fresatura frontale

$$\begin{split} S &= a_{_{Z}} \cdot p \text{ [mm}^2]; \\ T &= p_{_{t}} \cdot S \cdot Z_{_{i}} \text{[N]}; \end{split}$$

$$P = \frac{V_T \cdot T}{60 \times 10^3} \text{ [KW]};$$

Fresatura periferica

$$\begin{split} S_{max} &= a_{Z} \cdot l \cdot 2 \sqrt{\frac{p}{D}} \text{ [mm^2];} \\ T_{max} &= p_{t} \cdot S_{max}; \\ P_{max} &= \frac{V_{T} \cdot T_{max}}{60 \times 10^{3}} \text{ [KW];} \end{split}$$

RETTIFICA

Rettifica in tondo esterna

Scegliamo la velocità periferica della mola: V_{M} [m/s];

Da cui calcoliamo la velocità di rotazione : $n_{_M} = V_{_M} \cdot \frac{60 \times 10^3}{\pi D_{_M}}$ [giri/min] ;

 $\mbox{Velocità di rotazione del pezzo:} \qquad \qquad \mbox{$V_P = \frac{1}{60} \cdot V_M$ [m/s] $ da cui n_P;} \label{eq:Velocità}$

Avanzamento longitudinale : $f = \frac{2}{3} \cdot \frac{spessore\ mola}{giro\ pezzo}$;

Tutti i dati di taglio scelti sono presenti nel paragrafo 5.7 nella sezione dedicata ai fogli di fase.

5.6 ANALISI DEI TEMPI

Tempo di preparazione del tornio:

Attrezzature	Azione	Tempo standard (min)
Piattaforma autocentrante	Montare	0,6
	Smontare	0,6
	Regolare apertura	0,1
Piattaforma a 4 morsetti	Montare	2,1
indipendenti	Smontare	2,1
	Regolare 1 morsetto	0,3
Piattaforma a plateau	Montare	0,9
	Smontare	0,9
	Montare 1 staffa + 1 bullone	0,9
	Montare contrappeso	1,1
Menabrida	Montare	0,4
	Smontare	0,4
Contropunta-Punta	Montare nel mandrino	0,5
	Montare sulla controtesta	0,4
Lunetta fissa	Montare	0,6
	Smontare	0 6
	Regolare	1,2
Lunetta mobile	Montare	0,6
	Smontare	. 0,6
	Regolare	0,9

In figura a lato, mostriamo la tabella dei tempi di preparazione relativi al tornio.

Riferimento: Giusti Santochi - Tecnologia meccanica e studi di fabbricazione.

Tempi passivi di tornitura:

Attrezzo	Azione	Tempo standard (min)
Piattaforma autocentrante	Montare e smontare di sbalzo	0,2
	Centrare Ø 30÷70	0,3
	Centrare Ø 70÷120	0,5
Piattaforma autocentrante e contropunta	Montare e smontare	0,4
Piattaforma a 4 morsetti	Montare e smontare di sbalzo	0,4
indipendenti	Centrare grossolanamente	1,1
	Centrare con comparatore	3,3
Piattaforma a 4 mors. ind. e contropunta fissa	Montare e smontare	0,5
Piattaforma a 4 mors. ind. e contropunta rotante	Montare e smontare	0,7
Punta e contropunta	Montare e smontare	0,2
Brida	Montare e smontare sul pezzo	0,6

A fianco la tabella dei tempi passivi relativi al pezzo.

Riferimento: Giusti Santochi -Tecnologia meccanica e studi di fabbricazione.

Utensili-Attrezzi	Azione	Tempo standard (min)
Portautensili	Montare e smontare su torretta a serraggio rapido	0,1
Utensile	Montare e smontare su torretta o portautensili	0,5
Portapunta a forare	Montare e smontare su controtesta	0,4
Portautensile	Regolare altezza su torretta a serraggio rapido	0,2
Utensile	Regolare altezza su torretta	0,5
Carrello portautensili	Orientare normalmente Orientare con precisione	0,5 2,7

A fianco la tabella dei tempi passivi relativi agli utensili.

Riferimento: Giusti Santochi -Tecnologia meccanica e studi di fabbricazione.

Tempi attivi di tornitura:

I tempi attivi di tornitura sono facilmente calcolabili attraverso la formula:

$$t = \frac{L+e}{f \cdot n} [\min];$$

con L la lunghezza del pezzo da tornire, $e=e_{in}^{}+e_{out}^{}$ le extracorse dell'utensile, f l'avanzamento ed n il numero di giri del pezzo.

Tempi attivi di fresatura:

I tempi attivi di fresatura sono anch'essi facilmente stimabili attraverso la formula:

$$t = \frac{L' + e}{V_a} [\min]$$

Con L' la lunghezza che l'asse della fresa deve percorrere, $e\,$ l'extracorsa totale e $V_a\,$ la velocità di avanzamento.

Tempi attivi per la rettifica:

Possiamo risfruttare le formule usate per la tornitura.

Tutti i tempi attivi, passivi e di preparazione sono presenti nel successivo capitolo 5.7.

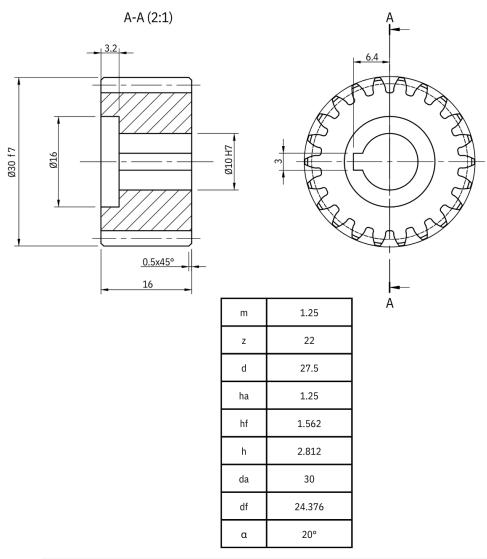
5.7 FOGLI DI CICLO E DI FASE

UNIVERSITÀ DI PISA Scuola di Ingegneria				AZIONE ELEMENTO: Pompa a ingranaggi			DENTI: o - Frandi Matilde	FOGLIO 1/2
DESIGNAZIONE SUPERFICI	N.	FASI	MACCHINA	SCHIZZO DI LAVORAZIONE	ATTREZZATURE	Tempo di preparazione Tempi passivi Tempi totale unitario	SUPERFICI DI RIFERIMENTO	NOTE
	10	Troncatura grossolana				,		
		Tornitura				8'	SP3 ed SP7	
(11) (7)		a. Troncatura ③ Centratura ③		(1) (7)	ino e	9' 2.5'	SP3	
(4) (9)		b. Troncatura 7 Centratura 7	<u>§</u>	<u>6</u> <u>1</u>	al mandr		SP7	nto
		c. Sgrossatura 1	T		te s		SP1, SR3, SR7	ime
5	20	d. Sgrossatura 2 d. Esecuzione gola 5 Esecuzione smusso 10	Tornio parallelo	2	Piattaforma autocentrante al mandrino contropunta rotante Punta e contropunta		SR1, SR3	SP: Superficie di Partenza SR: Superficie di Riferimento
2		e. Sgrossatura 4 Finitura 1 Esecuzione gola 6 Esecuzione smusso 11		10 3	Piattaforma contropunta Punta e con		SR2, SR7	SP: Super SR: Super
		Fresatura						
10 3	30	Esecuzione cava (8) linguetta A a. Esecuzione cava (9) linguetta americana	Fresatrice (2.2 KW)	2 8	Blocchetto a V Morsa	22" 22"	SR2	SR2 appoggiata al blocchetto a V e vincolata con la morsa

UNIVERSITÀ DI PISA Scuola di Ingegneria				RAZIONE ELEMENTO: - Pompa a ingranaggi		1	DENTI: o - Frandi Matilde	FOGLIO 2/2
DESIGNAZIONE SUPERFICI	N.	FASI	MACCHINA	SCHIZZO DI LAVORAZIONE	ATTREZZATURE	COMP. TEMPI Tempo di preparazione Tempi passivi Tempo totale Tempi attivi	SUPERFICI DI RIFERIMENTO	NOTE
		Rettifica						
	40	a. Rettifica in tondo 2	Rettificatrice (5.6 KW)	4 2	Piattaforma autocentrante al mandrino e contropunta	6.6' 6.6'	SR4, SR3	SR4 al mandrino, SR3 in contropunta
		b. Rettifica in tondo 4	Rettificatri	7 3	Piattaforma a al mandrino e		SR2, SR7	SR2 al mandrino, SR7 in contropunta
Vedere foglio 1								

		UNIVERSITÀ DI PISA Scuola di ingegneria		Parti	FASE DI LAVORA colare n°5 - Pompa			_	TUDENTI ni Duccio, Matilde	-	Foglio 1/5
1	erie me	Materiale	: C!	50E EN10083-2, Car	ratteristiche: R _m 6	50 N/mm²		P _m [KW]	P _{ass} [KW]	V _c [m/min]	n [giri/ min]
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]
			1	Φ16 in piattaforma autocentrante, troncare sup. (3) a 130 mm dal bordo	Portainserto: L151.21-2525-30 Inserto: N352.2-300-30-5G- 4225	Piattaforma autocentrante al mandrino	Calibro corsoio	0.85	0.163	30	0.1
	a.		2	Centrare Φ16 la sup.	Punta a centrare	Portapunte in controtesta		0.85	0.1	25	500
20	b.		1	Φ16 in piattaforma autocentrante, troncare a 110 mm dal bordo, sup. (7)	Come sopra	Come sopra	Come sopra				
	D.		2	Centrare Φ16, sup.(7)	Come sopra	Come sopra	Come sopra				
	c.		1	Bloccare il pezzo con punta e contropunta, eseguire sgrossatura della sup. (1) da Φ16 a Φ14.2	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 PMC 4425	Punta e contropunta	Calibro corsoio	0.85	0.181	50 1	995

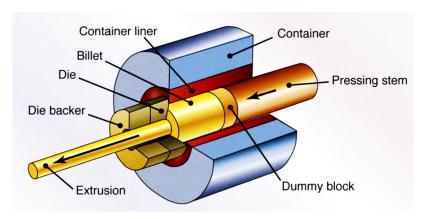
		UNIVERSITÀ DI PISA Scuola di ingegneria	Part	FASE DI LAVORA icolare n°5 - Pompa			1	TUDENTI ni Duccio, Matilde		Foglio 2/5
	terie me	Materiale	: C50E EN10083-2, Ca i	ratteristiche: R _m 6	50 N/mm²		P _m [KW]	P _{ass} [KW]	V _c [m/min]	n [giri/ min]
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	OPERAZIONE n°	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]
			Bloccare il pezzo con la piattaforma autocentrante a 30 mm dal bordo. 1 Sgrossare (2) da Ф14.2 a Ф10.2	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 PMC 4425	Piattaforma autocentrante al mandrino Contropunta in controtesta	Calibro corsoio	1.5	0.344	50 / 1	1000/
20	d.		Con l'utensile troncatore, creare la gola profonda 0.2 mm a 79 mm dal bordo.	Portainserto: L151.21-2525-30 Inserto: N352.2-300-30-5G- 4225	Come sopra	Calibro corsoio	1.5	0.164	30 / 1	940
			Con l'utensile con inserto a 45°, creare uno smusso profondo 1 mm al bordo	Portainsero: PSSNR 2525M 12 Inserto: SNMG 12 04 08 - MF 4425	Come sopra	Calibro corsoio	1.5	- /	70 / 1	1400


		UNIVERSITÀ DI PISA Scuola di ingegneria		Parti	FASE DI LAVORA colare n°5 - Pompa			_	TUDENTI ni Duccio, Matilde		Foglio 3/5
Mat pri	erie me	Materiale	: C5	0E EN10083-2, Car	atteristiche: R _m 6	50 N/mm²		P _m [KW]	P _{ass} [KW]	V _c [m/min]	n [giri/ min]
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]
			1	Bloccare il pezzo con la piattaforma autocentrante a 30 mm dal bordo. Sgrossare (4) da Ф14.2 a Ф10.2	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 PMC 4425	Piattaforma autocentrante al mandrino Contropunta in controtesta	Calibro corsoio	0.85	0.344	50 1	1000
20	e.		2	Cambiare inserto con quello finitore, dunque finire sup. (1)	Portainserto: PCLNR 2525 M 12 Inserto: CNMG 120408 MF 4425	Come sopra	Calibro corsoio	1.5	0.04	70 1	1570
			3	Con l'utensile troncatore, creare la gola profonda 0.2 mm a 28 mm dal bordo.	Portainserto: L151.21-2525-30 Inserto: N352.2-300-30-5G- 4225	Come sopra	Calibro corsoio	1.5	0.164	30 1	940
			4	Con l'utensile con inserto a 45° profondo 1 mm	Portainsero: PSSNR 2525M 12 Inserto: SNMG 12 04 08 - MF 4425	Come sopra	Calibro corsoio	0.85	- /	70 1	1400

		UNIVERSITÀ DI PISA Scuola di ingegneria		Parti	FASE DI LAVORA colare n°5 - Pomp			_	TUDENTI ni Duccio, Matilde	•	Foglio 4/5
	terie ime	Materiale	e: C5	0E EN10083-2, Car	atteristiche: R _m 6	550 N/mm²		P _m [KW]	P _{ass} [KW]	V _c [m/min]	n [giri/ min]
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	V _a [mm/ min]
30	a.		1	Appoggiare il pezzo sul blocco a V e bloccare il pezzo nella morsa, quindi eseguire la cava, sup. (8) di profondità 2.5 mm dalla superficie. I parametri di taglio sono gli stessi sia per la prima sgrossatura che per le passate di finitura laterali, da eseguire in opposizione		Blocchetto a V Morsa	Calibro corsoio	0.85	0.005	12 / 1	70
30	b.		1	Nella stessa configurazione, utilizzare la fresa a T con Φ13 ed eseguire la cava, sup. (9), di profondità 2.9 mm	Fresa a T Φ13	Come sopra	Calibro corsoio	0.85	3.125	12 / 3	196

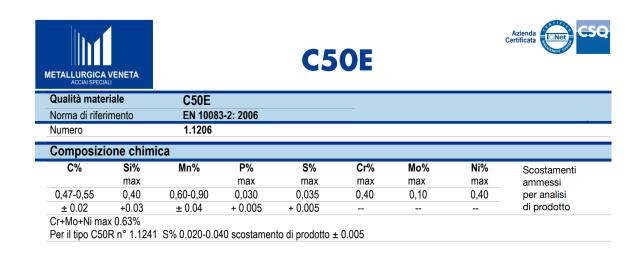
		UNIVERSITÀ DI PISA Scuola di ingegneria		Parti	FASE DI LAVORA colare n°5 - Pompa				TUDENTI ni Duccio, Matilde		Foglio 5/5
	terie ime	Materiale	: C5	0E EN10083-2, Car	atteristiche: R _m 6	50 N/mm²		P _m [KW]	P _{ass} [KW]	V _c [m/s]	n _{mola} [giri/ min]
Fase	S. Fase	SCHIZZO DI LAVORAZIONE	n°	OPERAZIONE	UTENSILI	ATTREZZATURE	CONTROLLO	η	p [mm]	n° _{pass}	a [mm/ giro]
			1	Bloccare il pezzo con punta e contropunta alla rettificatrice cilindrica, dunque rettificare la superficie (2) a Ra=0.8	Mola in ceramica 38A46-NVS	Blocchetto a V Morsa	Calibro passa- non-passa Φ10g6 Rugosimetro	0.85	0.1	35 1	0.02
40			1	Nella stessa configurazione, utilizzare la stessa mola per rettificare la superficie (4)	Come sopra	Come sopra	Coma sopra	5.6	1.4 / 0.1	35 1	3340/

6. PARTICOLARE 4 - INGRANAGGIO CONDUTTORE


6.0 DISEGNO TECNICO

	/ERSITÀ DI PIS ola di Ingegneri		
Particolare	Particolare n°4	Materiale: C50E	Foglio 1 : 1
Complessivo	Pompa a i	ngranaggi	Scala 2 : 1
Disegnatori	1	i Duccio Matilde	

6.1 SCELTA PROCESSO PRODUTTIVO


Per la produzione di questo pezzo sfrutteremo il processo di estrusione, cioè quel processo di deformazione plastica che permette di ottenere principalmente dei semilavorati di sezione anche complessa, oppure pezzi singoli. In tale processo uno spezzone di barra a sezione generalmente circolare (massello), introdotto in un contenitore, viene sottoposto a una forza di compressione attraverso una pressa orizzontale e obbligato a fuoriuscire da una matrice la cui sezione corrisponde, in forma e dimensioni, al prodotto desiderato.

Manufacturing, Engeneering & Technology - Fifth edition by Serope Kalpakjian

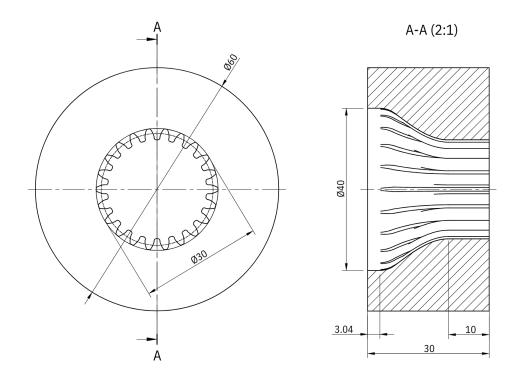
Data la piccola deformazione che cerchiamo di ottenere e poiché operiamo con tolleranze abbastanza strette, scegliamo di effettuare una estrusione a freddo di tipo diretto. Questa scelta è supportata anche dal fatto che il materiale presenterà una deformazione dei grani in superficie e degli incrudimenti che incrementeranno la resistenza meccanica del pezzo, una qualità sicuramente ben accetta per una ruota dentata.

MATERIALE: C50E EN 10083-2

Deforma	zione	Normalizzazione	Tempra	Tempra		Rinveni	mento	Distension	one
a caldo 1100-850)	860	830	850 olio (n	550-650		50 sotto la	а
1100 00	,	aria	acqua	polimero		aria		temperati	-
Ricottur	a di	Ricottura	Stato naturale	Tempra		Prerisca	ıldo	Distension	
lavorabi		isotermica	Stato Haturale	Jominy	provetta	per sald		dopo sal	
700		800 raff. forno	-	850		250		600 raffr.	
aria		fino a 660 poi aria		acqua		AC1	Ac3	Ms	Mf
(HB max	217)	(HB 180-226)	(HB max 255)			730	765	320	100
Proprie	età mecc	aniche e fisiche							
Laminat	i a caldo c	aratteristiche meccani	che allo stato norr	nalizzato [EN 10083-2	: 2006			
diametr	o/spess.	Prova di trazione in	longitudinale a +20	O°C					
n	ım	R	Re a)	A %	C%	Κv	HB		
oltre	fino a	N/mm ² min	N/mm ² min.	min.	min.	J min.	min		
	16/16	650	355	13			200		
16/16	100/100	610	320	14			183		
100/100	250/250	590	290	14			176		
Laminat	i a caldo c	aratteristiche meccani	che allo stato bon	ificato EN	10083-2: 2	006			
diametr	o/spess.	Prova di trazione e re	esilienza in longitud	dinale a +20	O°C				
n	ım	R	Re a)	A %	C%	Κv	HB		
oltre	fino a	N/mm ²	N/mm ² min	min.	min.	J min	per infori	mazione	
	16/8	750-900	520	13	30		225-271		
16/8	40/20	700-850	460	15	35		213-253		
40/20	100/60	650-800	400	16	40		200-240		
a) Re car	ico unitario	di snervamento supe	riore, qualora non	si manifesti	marcatame	ente, va con	siderato Rp o.:	2	
Tabella	di rinvenin	nento valori a tempera	atura ambiente su	tondo Ø 10	mm dopo t	empra a 830	0 °C in acqua		
НВ		560	481	409	9	32	6	242	
HRC		55	50	44		35		23	
R N	/mm²	2070	1760	143	30	10	80	810	
Rinv. °C		200	300	400)	50	0	600	

CALCOLI PER LA DEFORMAZIONE PLASTICA

• Deformazione: $\varepsilon = ln(\frac{A_0}{A_f}) = 0.7665$ $\operatorname{Con} A_0 = 1256.6 \, mm^2 \, \text{poich\'e usiamo un tondo di partenza di diametro } \Phi 40 \, \text{mm},$ $A_f = 584 \, mm^2 \, \text{(superficie calcolata dal CAD)}.$


• Tensione in campo plastico:
$$\sigma = K \cdot \epsilon^n = 932 MPa$$

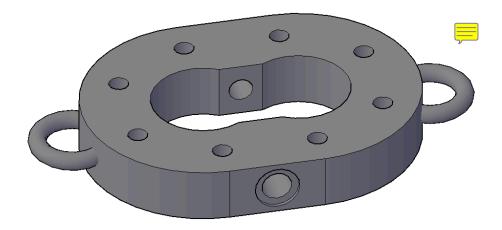
Con
$$K = 970$$
 ed $n = 0.15$

• Lavoro di deformazione:
$$W_i = K \cdot \frac{\varepsilon^{n+1}}{n+1} = 621 J$$

• Aumento di temperatura:
$$\Delta T = \frac{W_i}{\rho \cdot c} = 165^{\circ}$$

DISEGNO TECNICO DELLA MATRICE

6.2 CALCOLO FORZA NECESSARIA PER L'ESTRUSIONE


- Pressione da esercitare: $p = \sigma \cdot (K_1 + K_2 \cdot ln(\frac{A_0}{A_f})) = 2 \ GPa$ Con K1 = 0.8; K2 = 1.2; costanti sperimentali
- Forza totale: $F = p \cdot A_0 = 3.8 MN$

7. SALDATURA

Si è pensato di saldare due semi anelli all'estremità del nostro corpo intermedio (particolare 7) con dimensioni diametro esterno 25 mm e diametro interno 15 mm.

Questo permette di avere una più comoda trasportabilità del pezzo.

7.1 SCELTA DEI MATERIALI

Il materiale del corpo centrale è una lega in Alluminio e Silicio (EN 45300) mentre i due semi anelli sono in una lega di Alluminio e Magnesio. Questo per garantire un'ottima resistenza meccanica. Il materiale d'apporto che usiamo è la lega Al-Si 4043.

7.2 SCELTE PROGETTUALI

Per realizzare i giunti a T eseguiamo una saldatura di tipo MIG. Dal momento che è una piccola officina in questo modo non c'è bisogno di un'elevata specializzazione da parte degli operai. Si usa la modalità "spray arc" così da usare tensioni attorno ai 25 V. L'alimentazione è in corrente continua con polarità inversa data la tipologia di processo.

Si sceglie l'Argon puro come gas protettivo e il filo per il materiale d'apporto da 1.2 mm.

Come prima cosa si puliscono attentamente le superfici del corpo intermedio e dei nostri semianelli, inoltre si effettua un preriscaldamento, questo permette di ottenere, attraverso lo strato di ossido, un punto di fusione più elevato e dunque garantire una saldatura di qualità. Dunque attraverso dei morsetti ci si assicura che i pezzi siano correttamente posizionati. Quindi si prepara la saldatrice con l'Argon e il filo scelto.

PARAMETRI DI SALDATURA

Modalità di saldatura: Spray arc;
Voltaggio: 25 V;
Gas di protezione: Argon;

• Materiale d'apporto: filo di Al-Si 4043 di diametro Φ1.2 mm;

• Velocità di apporto materiale: 10 m/min;

7.3 SCELTA DELLA MACCHINA

MILLERMATIC 255 MIG/Pulsed MIG welder

ALIMENTAZIONE ELETTRICA: 20 - 350 A (DC)

APPLICAZIONI

Saldatura di alluminio: spessori limite: 1.2 - 12.7 mm;

Saldatura di acciaio: spessori limite: 0.5 - 12.7 mm;

Saldatura di acciaio inox: spessori limite: 0.5 - 12.7 mm;

MATERIALI D'APPORTO

Alluminio: 0.9 mm - 1.2 mm; Acciaio: 0.6 mm - 1.2 mm; Acciaio inox: 0.6 mm - 1.2 mm;

Velocità del filo: 1.3 - 20 m/min;

8. BIBLIOGRAFIA

LIBRI

S. Barsali, G.C. Barsotti e U. Rosa, Lezioni di disegno di macchine.

M. Santochi e F. Giusti, Tecnologia meccanica e studi di fabbricazione, seconda edizione.

S. Kalpakjian e S.R. Schmid, Manufacturing, Engineering & Technology, quinta edizione.

Tecnologia meccanica e laboratorio tecnologico, Giunti Marzocco.

SITOGRAFIA

https://www.raffmetal.it/

https://www.sandvik.coromant.com/it-it

https://guehring.com/chit

https://www.knuth.com/it

https://www.leroymerlin.it/

https://www.nortonabrasives.com/it-it/node/21301

https://metallurgicaveneta.it/

https://www.millerwelds.com/

SOFTWARE CAD, CAM e non

AutoCAD.

Altair Inspire Cast.

Fusion360.

UltiMaker Cura.

Excel.

Fogli Google.

Canva.

ChatGPT.

Gemini.