RUOTA PER CARRELLO

UNIVERSITÀ DEGLI STUDI DI PISA

INGEGNERIA PER IL DESIGN INDUSTRIALE

Tecnologia Meccanica

Di: Dawood Marg e Viale Iacopo

INTRODUZIONE

L'assieme che abbiamo scelto per questo processo è una **ruota posteriore non sterzante per carrello**.

Abbiamo ipotizzato di ricevere una **commissione di 140 ruote** che verranno utilizzate per la realizzazione di 70 carrelli di servizio per laboratori ed officine.

I **componenti** che abbiamo preso in analisi **e** i relativi **processi** di lavorazione sono:

- (n° 1) Frame: fusione
- (n° 2) Plate: deformazione plastica
- (n° 4) Flange: stampaggio 3D
- (n° 7) Shaft: asportazione di truciolo
- (n° 8) Vite M12 ISO 8678: saldatura

SOFTWARE UTILIZZATI

I **software** che sono stati utilizzati per questo progetto sono **tre**:

- Solidworks
- Inspire Cast 2025
- Snapmaker Luban

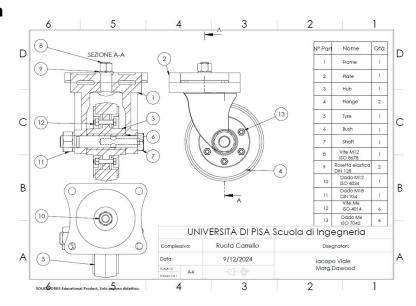


Figura 1: disegno tecnico assieme "Ruota Carrello"

PROCESSO DI FUSIONE

SCELTA DEL PEZZO

Il componente della ruota del carrello che abbiamo voluto realizzare tramite il processo di fusione è il **Frame**, il particolare **numero 1**.

Tenendo conto del lotto che dobbiamo produrre, vanno realizzati 140 pezzi.

Figura 2: modello 3D della parte "Frame"

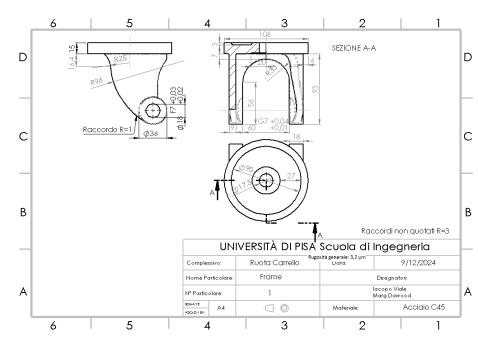


Figura 3: disegno tecnico parte "Frame"

SCELTA DEL MATERIALE

Analizzando il contesto di uso dei carrelli che hanno le nostre ruote come componenti, quest'ultime dovranno resistere a **carichi pesanti e urti**; queste condizioni ci hanno spinto a selezionare l'**acciaio** come materiale e, poiché i **"non legati"** sono preferibili per l'utilizzo in fonderia e hanno un costo minore, abbiamo selezionato il **C45** ("non legato" secondo la normativa EN10020) per questi motivi:

- ottima lavorabilità
- buona colabilità
- buona resistenza meccanica
- raffreddamento uniforme
- bassa tendenza a criccatura
- può subire trattamenti termici
- molto diffuso (un fattore positivo perché ci sono molte norme a riguardo e siamo sicuri dei valori delle proprietà meccaniche)

Il **costo** dei rottami di questo acciaio sta all'incirca sugli **0,80€/Kg** e la **densità** di questo materiale è di **7850Kg/m³**.

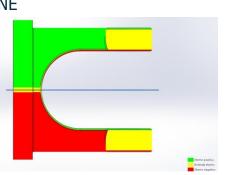
Figura 4: scheda tecnica Acciaio C45

SCELTA METODO DI FORMATURA

Per selezionare il metodo di formatura più adatto a noi, in primis, siamo partiti dal numero di pezzi che il committente ci ha richiesto: 140.

Poiché questo ordine è considerabile piccolo-medio lotto e il pezzo ha una forma complicata, abbiamo deciso di continuare la progettazione con la tipologia **"in terra"**.

SCELTA DELLA TERRA


Dopo aver selezionato e confrontato tre tipi di sabbie (sabbia verde, cromitica e olivinica), abbiamo selezionato la **"sabbia olivinica"** poichè permetteva di avere temperatura massima di utilizzo non troppo vicina a quella di fusione del nostro acciaio, limitando i costi.

Questa ha una **densità** di **3300Kg/m**³ ("*Ore-Met Olivina Sands"*) e, ipotizzando che la nostra azienda faccia altre fusioni al di fuori del nostro progetto e che quindi abbia bisogno di tonnellate di sabbia, un **costo** all'ingrosso di circa **0,25€/Kg**.

PROGETTAZIONE GETTO

SELEZIONE PIANO DI DIVISIONE

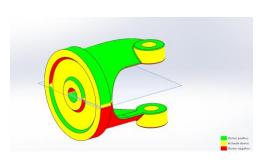


Figura 6: vista libera scelta piano di divisione

SOVRAMETALLI

A questo punto abbiamo inserito i **sovrametalli** al pezzo iniziale, individuando le **zone** che ne necessitavano **e** stabilendo quali fossero **dimensioni critiche** e quali no, applicando i dimensionamenti consigliati sulle **tabelle** del libro "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti".

Non critiche | Critiche

Figura 7: superfici sovrametalli

Quote nominali di riferimento	MASSIMA DIMENSIONE DEL PEZZO (mm)				
(mm)	≤250	250 + 1000	≥1000		
≤ 40	4	4	5		
40 ÷ 65	4	. 4	5		
65 + 100	4	4	5		
100 + 160	4	5	5		
160 + 250	6	6	7		
250 ÷ 400	-	6,5	7		
400 ÷ 630		7.	8		
630 ÷ 1000		, 8	9		

Il sovrametallo delle superficie di partenza si considera uguale a 3 mm per pezzi con dimensione massima ≤ 160 mm e uguale a 4 mm per pezzi con dimensione max >160 mm.

Tabella 1: Sovrametalli sulle "dimensioni non critiche" di getti in acciaio per fusione in terra, "AFNOR"

Quote nominali	MASSIMA DIMENSIONE DEL PEZZO (mm)					
di riferimento (mm)	≤250	250 ÷ 1000	≥1000			
≤ 40	6	6	8			
40 ÷ 65	6	6	9			
65 + 100	6	7	10			
100 + 160	7	7	10			
160 ÷ 250	8	8	10			
250 ÷ 400	-	9	11			
400 + 630	-	10	12			
630 ÷ 1000	-	11	, 14			
1000 + 1800	-	-	17			
1800 + 2500	-	-	20			

Tabella 2: Sovrametalli sulle "dimensioni critiche" di getti in acciaio per fusione in terra, "AFNOR"

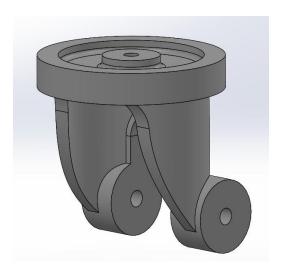


Figura 8: modello 3D del "Frame" dopo l'aggiunta dei sovrametalli

RITIRO

Per sapere di quanto scalare, abbiamo nuovamente guardato dalle tabelle del libro "Santochi".

Poiché il coefficiente di ritiro che ci interessa è del 2%, scaliamo il nostro pezzo di: **1,02**.

MATERIALI	RITIRO %				
	Getti piccoli	Getti medi	Getti grandi		
Ghise grigie	1	0,85	0,7		
Ghise malleabili	1,4	1	0,75		
Ghise legate	1,3	1,05	0,35		
Acciaio	(2)	1,5	1,2		
Alluminio e leghe	1,6	1,4	1,3		
Bronzi	1,4	1,2	1,2		
Ottoni	1,8	1,6	1,4		
Leghe di magnesio	1,4	1,3	1,1		

Tabella 3: tabella dei ritiri, "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

ANGOLI DI SFORMO

La scelta dell'angolo di sformo è stata fatta tenendo conto che il materiale del **modello** sarà **in legno** e quindi sarebbero servit degli sformi di almeno **2°**.

Sono state sformate solamente le superfici che ne avevano bisogno.

Valori indicativi dell'an	golo di sformo
Modelli in legno	1°-2°
Modelli metallici	30'
Portate d'anima verticali	10°-12°

Nervature sottili

Tabella 4: valori angolo di sformo "Tecnologia meccanica e studio di fabbricazione –

1'-2'

Figura 9: modello 3D del "Frame" dopo l'aggiunta degli angoli di sformo

RAGGI DI RACCORDO

Da estratti di letteratura tecnica come "Principles of Metal Casting (Heine, Loper, Rosenthal)" e "Foseco Foundryman's Handbook" e dall'esperienza tratta da corsi universitari precedenti, gli spigoli interni devono avere raccordi almeno il doppio di quelli esterni; per questo motivo, abbiamo usato raccordi di **1 mm** per gli **esterni e** di **3 mm** per quelli **interni**.

Figura 10: modello 3D del "Frame" dopo l'aggiunta dei raggi di raccordo

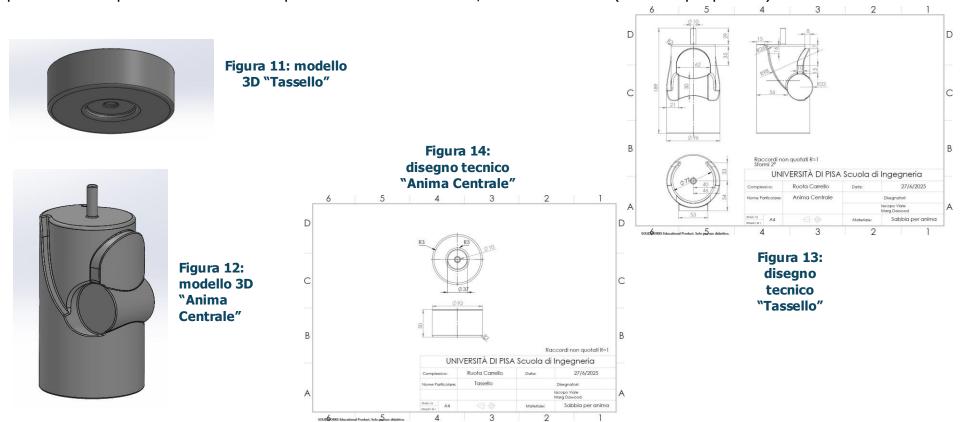
PROGETTAZIONE ANIME

SABBIA

Per la scelta della sabbia e degli altri additivi, abbiamo tenuto conto di alcune proprietà che questo composto dovrebbe avere:

- buona resistenza termica
- resistenza meccanica a temperature maggiori di 1600°C
- ottima stabilità e precisione dimensionale
- possibilmente, una buona ventilazione

La decisione finale è ricaduta sulla "**sabbia prerivestita**" poiché è perfetta per le geometrie complesse, ha un'elevata resistenza a caldo e ha una densità relativamente bassa.


Abbiamo scelto come base la **sabbia silicea**, come binder liquido e additivo in polvere, invece, l'**Inotech 3000** (consigliato per i getti di acciaio e per ridurre la porosità) e il **Promotor WJ6500**.

Questo "impasto" ha una densità di circa 1590Kg/m³ e un costo di circa 0,20€/Kg

MODELLAZIONE ANIME E PORTATE D'ANIMA

Abbiamo pensato di realizzare **due anime** che si incastrano tra di loro: un tassello per lo svaso superiore e una che riempie il vuoto presente tra le due "guance" del pezzo.

Riguardo le **portate d'anima**, abbiamo prolungato le sezioni cilindriche delle due anime, differenziando in base alle dimensioni di queste ultime: quella centrale ha una portata d'anima di **50mm**, mentre il tassello (essendo più piccolo) di **30mm**.

RAFFREDDAMENTO

MODULI DI RAFFREDDAMENTO

Prima di calcolare i moduli di raffreddamento, abbiamo suddiviso il nostro pezzo sfruttando i cambiamenti geometrici e la simmetria.

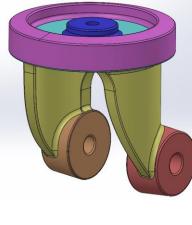


Figura 15: suddivisione moduli di raffreddamento

M1 (area **gialla**):
$$V = 82801,63 \text{ mm}^3$$
 $A_{totale} = 38063,55 \text{ mm}^2$

 mm^2

mm

 $A_{\text{comune}} = 1359,60 \text{ mm}^2$ $A_{comune} = 10915,64$ $A = A_{totale} - A_{comune} =$ 2206,14 mm²

M2 (area blu):

 $V = 7241,19 \text{ mm}^3$

 $A_{\text{totale}} = 3565,74 50 \text{ mm}^2$

M3 (area fucsia): $V = 37557,64 \text{ mm}^3$

 $A_{\text{totale}} = 15380,50 \text{ mm}^2$ $A_{\text{comune}} = 5213,46 \text{ mm}^2$ $A = A_{totale} - A_{comune} =$

10167,04 mm² M3 = V/A = 3,69 mm $A_{comune} = 2407,23 \text{ mm}^2$ $A = A_{totale} - A_{comune} =$ 5467,86 mm²

M4 = V/A = 7.86 mm

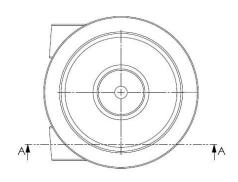
M4 (area rossa e

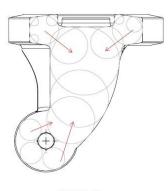
 $V = 42954,82 \text{ mm}^3$

 $A_{\text{totale}} = 7875,09 \text{ mm}^2$

arancione):

 $A_{totale} = 26661,33 \text{ mm}^2$ $A_{\text{comune}} = 12674,24 \text{ mm}^2$ $A = A_{totale} - A_{comune} =$ 13987,09 mm²


M5 (area **celeste**):


 $V = 133642,33 \text{ mm}^3$

M5 = V/A = 9,55 mm

M2 = V/A = 3,28 mm $A = A_{totale} - A_{comune} =$ 27147,91 mm² M1 = V/A = 3,05

CERCHI DI HEUVERS

SEZIONE A-A

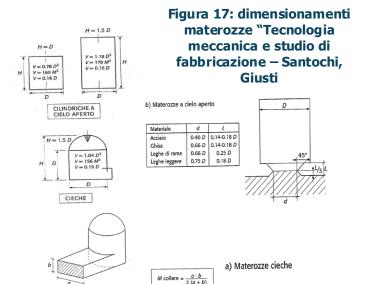
Figura 16: raffigurazione "Cerchi di Heuvers"

PROGETTAZIONE MATEROZZA

La **progettazione delle materozze** è divisibile in due parti:

• Parte di modellazione:

All'inizio abbiamo analizzato la posizione dei moduli di raffreddamento, notando che questo non avviene in modo lineare. A questo punto abbiamo iniziato a dimensionare delle possibili materozze da inserire nelle zone M4 e M5 (sia nella versione "a cielo aperto" che non).


A seguito di alcune osservazioni, abbiamo proseguito con la modellazione delle materozze "a cielo aperto".

Materozza in M5:

 $M_m = M4*1,2 = 11,46$ mm $V = 179M_m^3 =$ $269405,76 \text{ mm}^3$ $D = \sqrt[3]{(V/1,18)} = 61,12$ mm H = 1,5*D = 91,68 mm d = 0,4*D = 24,45 mmL = 0,18*D = 11,00 mm

Materozza in M4:

 $M_m = M5*1,2 = 9,43$ mm $V = 179M_m^3 =$ $150102,56 \text{ mm}^3$ $D = \sqrt[3]{(V/1,18)} = 50,29$ mm H = 1,5*D = 75,44 mm d = 0,4*D = 20,12 mmL = 0,18*D = 9,05 mm

• Parte con InspireCast 2025:

A questo punto abbiamo iniziato a controllare e a verificare il sistema di materozza, fino a quando non abbiamo trovato la soluzione che ci forniva meno **porosità** possibili al valore di **5%**.

Alla fine di tutte queste verifiche, abbiamo capito che la materozza in M5 è sufficiente e garantisce il minimo delle porosità.

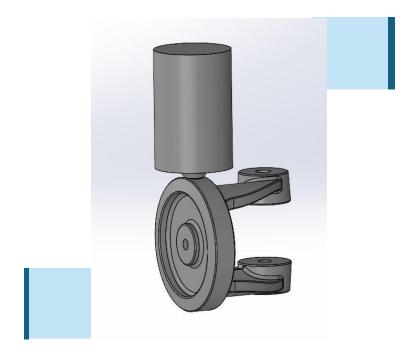


Figura 18: modello 3D "Frame" dopo l'aggiunta della materozza

PROGETTAZIONE SISTEMA DI COLATA

PROVE

Nei prossimi paragrafi riportiamo solamente i calcoli del sistema di colata definitivo e tutte le decisioni prese.

Ovviamente, non abbiamo fatto un solo sistema e lo abbiamo preso per corretto; i sistemi che sono stati scartati, lo sono stati per due motivi: o il greggio si solidificava prima che finisse il riempimento o le porosità al 5% erano troppo elevate.

Di seguito riportiamo alcune schermate di alcuni degli studi che abbiamo fatto con il software "InspireCast 2025" per verificare che i sistemi fossero corretti:

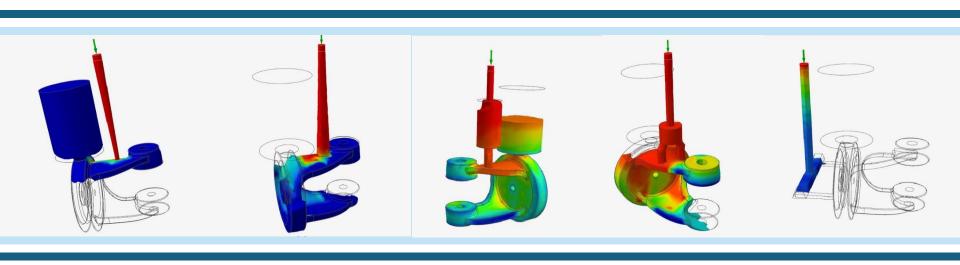


Figura 19: cinque diversi sistemi di colata che non funzionano

TIPOLOGIA

Per prima cosa abbiamo progettato i vari sistemi di colata sia nel caso sistema "pressurizzato", sia "non".

Nonostante il sistema "non pressurizzato" fosse la scelta più adatta per il nostro sistema, i dimensionamenti non permettevano l'ottenimento di sistemi funzionanti, costringendoci a calcolare le varie sezioni secondo il dimensionamento del "sistema pressurizzato".

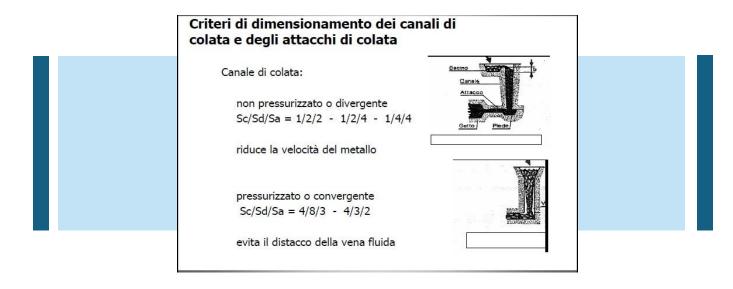


Figura 20: Dimensionamento canali e attacchi di colata, Università degli Studi di Trieste,
"Le Lavorazioni Per Fusione"

Vtot = Vpezzo + Vmaterozza = Sezione attacco di colata: 752477,36 mm3 (ricavato da $S_a = 52,55 \text{ mm}^2$ "SolidWorks") Utilizzando due attacchi di Peso Greggio: sezione circolare, i raggi di $G = Vtot *_{\rho} = 5.91Kg (_{\rho} =$ questi sono: 7,85*10-6 Kg/mm3) $R_a = \sqrt{(S_a / 2*\pi)} = 2.89 \text{ mm}$ Tempo di colata: $T = 3.2 * \sqrt{G} = 7.77 s$ Portata: K = G/T = 0.76 Kg/sDislivello di colata: h = 173,00 mm (misurato con "SolidWorks", sapendo il punto dal quale colo) Velocità fluido: $v = \sqrt{(2*q*h)} = 1842,35 \text{ mm/s}$ Sezione attacchi di colata:

ATTACCHI DI COLATA

Sezione canale di colata: $S_c = S_a*2 = 105,1 \text{ mm}^2$

Utilizzando un attacco di

sezione circolare, il raggio è: $R_c = \sqrt{(S_c / \Pi)} = 5.78 \text{ mm}$

CANALE DI COLATA

Sezione canale di distribuzione: $S_d = S_a * 1.5 = 78.83 \text{ mm}^2$ Utilizzando un attacco di sezione trapezoidale:

CANALE DI

DISTRIBUZIONE

 $b = 2*R_{c}$ $B = (3/2) * b = 3*R_c$ $S_d = (b+B) * h/2 \rightarrow h = 8.76$ mm

SISTEMA FINALE

Sa = K / $(v * \rho)$ = 52,55 mm2

GRANDEZZE GENERALI

Alla fine di tutti i calcoli e le prove fatte con i vari sistemi, il sistema finale è quello che si ottiene **colando direttamente nella** materozza.

TEMPERATURA DI RIEMPIMENTO

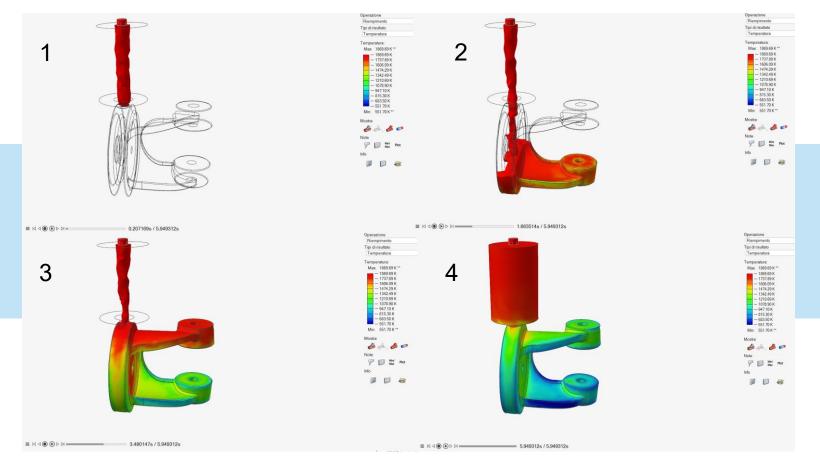


Figura 21: quattro schermate raffiguranti la temperatura nel corso del riempimento

POROSITÀ

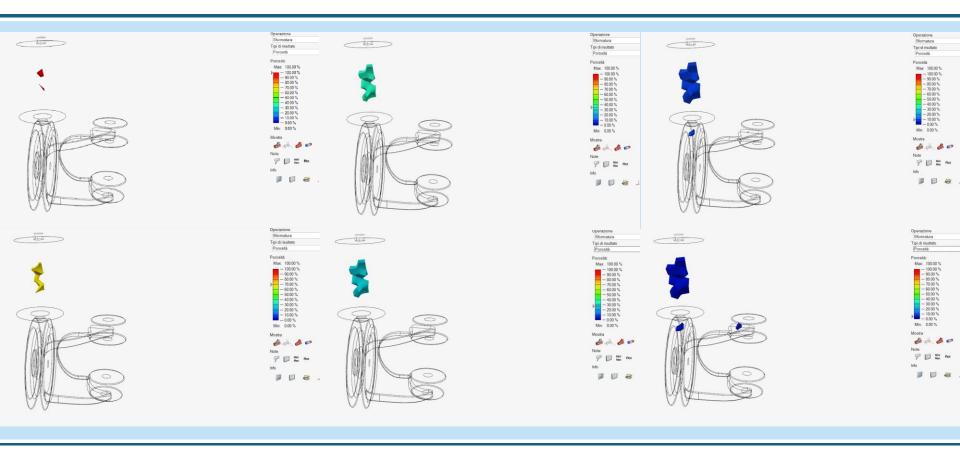


Figura 22: sei schermate raffiguranti le quantità di porosità a diverse percentuali di essa

SCELTA STAFFE

Per selezionare le staffe, siamo partiti dalle misure del getto e abbiamo selezionato la coppia di staffe più consona, utilizzando una tabella presente nella "UNI 6765-70".

	ь						H						
250	315	50	63	80	100	125	160	200					-
280	355	50	63	80	100	125	160	200	250				
315	400	50	63	80	100	125	160	200	250	300			
355	450			80	100	125	160	200	250	300			
400	500				100	125	160	200	250	300	355		
450	560				100	125	160	200	250	300	355		
500	630				100	125	160	200	250	300	355	400	
560	710				100	125	160	200	250	300	355	400	
630	800				100	125	160	200	250	300	355	400	
710	900					125	160	200	250	300	355	400	500
800	1000					125	160	200	250	300	355	400	500
900	1100			~-			160	200	250	300	355	400	500
1000	1300							200	250	300	355	400	500
1100	1400							200	250	300	355	400	500
1200	1500								250	300	355	400	500
1300	1600								250	300	355	400	500
1400	1700									300	355	400	500
1500	1800									300	355	400	500

Tabella 5: tabella per le staffe rettangolari, "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti", UNI 6765-70

Le **staffe** che abbiamo selezionato sono:

- staffa inferiore: 250 mm x 315 mm x 63 mm
- staffa superiore: 250 mm x 315 mm x 200 mm

La staffa superiore non verrà riempita totalmente dato che è più alta del punto di colata.

PLACCHE MODELLO

Abbiamo pensato di utilizzare il **legno di betulla** per le placche modello perché:

- costo contenuto
- stabilità dimensionale
- facilmente lavorabile
- resistente all'usura
- ridotto assorbimento di umidità

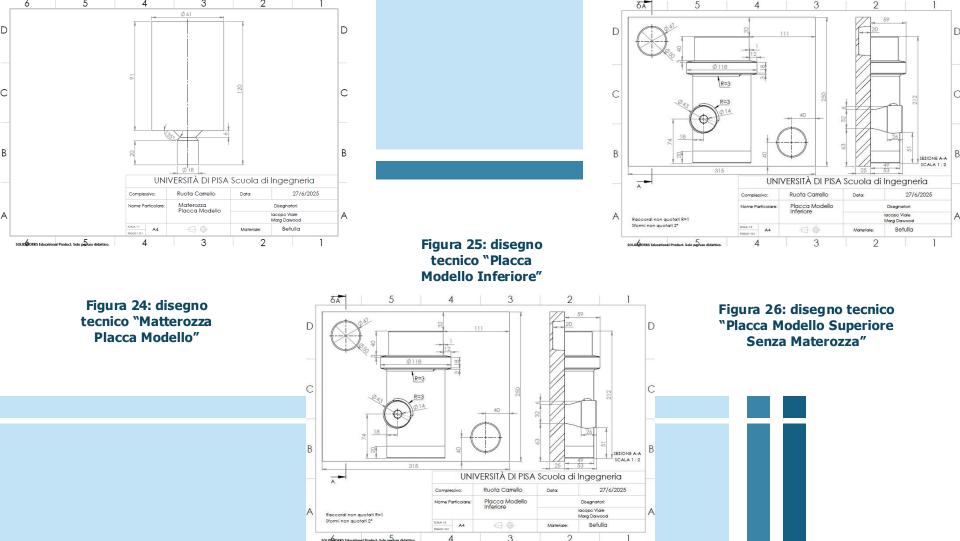



Figura 23: quattro modelli 3Ddelle placche modello e della materozza estraibile

CALCOLO SPINTE METALLOSTATICHE

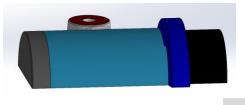


Figura 27: individuazione e distinzione delle superfici utili per il calcolo delle spinte metallostatiche

Anime:

h: altezza superficie V: volume immerso nel liquido

 $F = V * \delta - V_{tot} * \delta_A$

V_{tot}: volume totale dell'anima

 $\delta_{\Delta} = \rho_{\Delta} * q = 15597,90 \text{ N/m}^3$

 $\rho_A = 1590 \text{ Kg/m}^3 \text{ (densità sabbia anima)}$

Superfici cilindriche: $F = \delta * D * [H - \pi * (D / 8)] * L$

D: diametro superficie cilindrica L: lunghezza superficie

H = 0.173 m (altezza dalla quale colo rispetto al piano di

 $\rho = 7850 \text{ Kg/m}^3 \text{ (densità acciaio)}$ $q = 9.81 \text{ m/s}^2$ (accelerazione gravitazionale) $\delta = \rho * q = 77008,50 \text{ N/m}^3 \text{ (peso specifico acciaio)}$

F1:

divisione)

D = 0.118 m

 $L = 0.024 \, \text{m}$ F1 = 27,92 N

F2: D = 0.098 m

L = 0.098 m

F2 = 99,49 N

 $S = 0.0013 \text{ m}^2$

F3:

F3 = 6,71 N

 $h = 0.067 \, \text{m}$

Superfici piane:

 $F = S * h * \delta$

S: superficie

F5:

F4:

F4 = -0.58 N $V = 7,05*10^{-4} \,\mathrm{m}^3$ $V_{tot} = 0.00107 \,\mathrm{m}^3$ F5 = 37,65 N

V = 5,77*10-5 m3 $V_{tot} = 0,00032 \text{ m}3$

La forza totale è data dalla somma di queste singole forze appena citate:

$$F_{tot} = F1+F2+F3+F4+F5 = 171,19 N$$

A questo punto dobbiamo verificare che la forza peso della terra da fonderia posta sopra il nostro pezzo sia maggiore della forza totale; qualora non lo fosse, dovremmo aggiungere dei pesi sopra le staffe.

Il peso della sabbia è: $F_s = V_{sabbia} * \rho_s * g$

 $V_{sabbia} = V_{StaffaSuperiore} - V_{MetàSuperiorePezzoEMaterozza}$

 $V_{StaffaSuperiore} = (0.25m * 0.315m * 0.173m) = 0.0136 m^3$

 $V_{\text{MetàSuperiorePezzoEMaterozza}} = 0,00112 \text{ m}^3$

 $\rho_{\rm s} = 3300 \, {\rm Kg/m^3}$

Facendo i calcoli: $F_s = 404 \text{ N}$

Essendo il peso della sabbia maggiore della forza totale calcolata precedentemente, non serve riporre alcun peso sopra le staffe durante la fase di colata.

COSTO PER UN PEZZO E TEMPI FUSIONE

Riquardo i costi e i tempi di fusione, abbiamo fatto due diversi studi: il **primo** prevede il lavoro di **tre operai**

contemporaneamente e il secondo ne prevede due in parallelo.

Un'altra differenza sta nel fatto che, nel secondo caso, viene fatto un unico carico di acciaio nella fornace.

MANODOPERA FASE FUSIONE

Riempimento sabbia e anime

Rimozione sabbia, anime e materozza

Carico fornace

Montaggio staffe

Raffreddamento

Distaffamento

€_{operai1pezzo}

Fusione

Caso 1 (24 pezzi al giorno) 10 min.

60 min.

2 min.

10 min.

45 min.

3 min.

15 min.

16,70€

45 min. 3 min.

15 min.

14,06€

30 min.

90 min.

2 min.

10 min.

Caso 2 (16 pezzi al giorno)

Per calcolare il prezzo della sabbia da fonderia per un pezzo dobbiamo sapere: volume delle staffe, densità sabbia, costo della sabbia al kg e il volume delle placche modello (senza bottoni di centraggio e le basi rettangolari).

SABBIA

Tenendo conto che questa sabbia è riutilizzabile 15 volte, il costo di questa per un pezzo ammonta a:

$$€$$
{sabbia1pezzo} = [(V{staffe} - V_{PlaccaModSup} - V_{PlaccaModInf}) * ρ_s] / 15 = **0,91** €

METALLO Come è possibile leggere nella "DIN EN ISO 683 – 1" e nello "Steel Recycling Sheet", possono essere riciclati l'80%

degli scarti; perciò, il materiale utilizzato per realizzare un pezzo ammonta a: il metallo del pezzo finito, più il 20% degli scarti.

MODELLI IN LEGNO

La betulla, materiale scelto per la realizzazione dei modelli in legno, ha una densità $\rho_{Betulla} = 650 \text{ Kg/m}^3$ e un costo di circa 3

€_{manodoperaCoppiaPlacche} = 25 €/h * 8 h = 200 €

Per sapere il costo del materiale, devo scegliere un blocco di betulla (il più piccolo possibile) che possa tenere al suo interno una

Il prezzo è di: €acciaio1pezzo = (Vpezzofinito + Vgreggio) * ρC45 * 0,80 €/Kg = 2,06 €

placca modello.

$$€_{\text{materiale}} = [0,25\text{m} * 0,315\text{m} * (0,233\text{m} + 0,04\text{m})] * \rho_{\text{Betulla}} * 3 €/\text{Kg} = 41,93 €$$

Caso 1: **€mod1pezzo** = [(200+41,93) * 3] / 140 = **5,18€**

€mod1pezzo = [(200+41,93) * 2] / 140 = **3,46€**

ENERGIA

Secondo l'ISPRA, "il consumo di energia per la fusione si aggira sui 650kWh per tonnellata di acciaio" per un forno a induzione da fonderia. Sapendo il volume del greggio, la densità del C45 e il prezzo dell'energia elettrica:

Caso 1:

Carichiamo la fornace ad ogni ciclo, sta accesa 1h e produce 3 pezzi:

€_{energetico1pezzo} = (11,52 kWh * 0,1556 €/kWh) / 3 **= 0,60**€

Caso 2:

Carichiamo la fornace a inizio giornata con la quantità di metallo utile per tutta la produzione giornaliera e la fornace sta accesa tutto il giorno (12 h).

L'acciaio fonde in 1,5h e nelle restanti 10,5 h, il forno deve solamente mantenere l'acciaio caldo (holding). Questa fase richiede una potenza (stimata) pari al 10% della potenza necessaria per fondere (*ABP Induction: "Energy-saving melting* and holding").

 $\epsilon_{anima1pezzo}$ = 1590 Kg/m³ * 0,20 €/Kg * (1,39 * 10⁻³) m³ = 0,44 €

ANIME

STAFFE Per la realizzazione di un pezzo servono due staffe e lavorando in parallelo, abbiamo bisogno di tante coppie di staffe:

Caso 2: Caso 1:

€_{staffe1pezzo} = 100 € * 2 / 140 = 1,43 € **€**_{staffe1pezzo} = 100 € * 3 / 140 = **2,14** €

COSTO FINALE

Caso 1:

€_{tot1pezzo} = (16,70 + 0,91 + 2,06 + 5,18 + 0,60 + 0,44 + 2,14) ∈ =**28,03**€

Caso 2:

€_{tot1pezzo} = (14,06 + 0,91 + 2,06 + 3,46 + 1,02 + 0,44 + 1,43) ∈ =**23,38**€

stiamo producendo, ridurre il costo finale di 4,65 € permette di avvicinare maggiormente il costo a quelli del mercato.

SCELTA CASO

Nonostante i giorni di produzione aumentino, riteniamo che il secondo caso sia il migliore perché, tenendo di conto il pezzo che

STAMPA 3D

PEZZO

Il pezzo che abbiamo deciso di realizzare attraverso la stampa 3D è la **flangia** (particolare numero 4).

Poiché per ogni ruota servono due flange, il lotto di produzione è di 280 elementi.

Figura 28: doppia vista del modello 3D della parte "Flange"

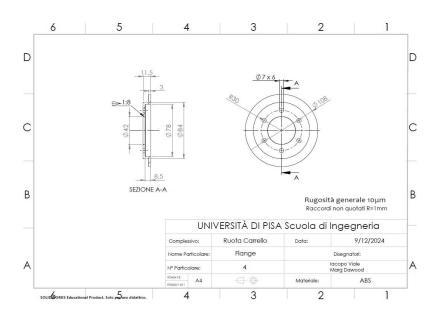


Figura 29: disegno tecnico della parte "Flange"

TIPO DI STAMPA

Abbiamo scelto di stampare con il filamento (FDM) per questi motivi:

- non necessita una finitura precisa
- presenza di fori
- evitiamo alcune delle spese dovute alla sicurezza del personale che dovrebbe lavorare con resine tossiche, quelle dovute al post-trattamento in camera UV e quelle per la pulizia dalla resina

STAMPANTE

Come stampante, abbiamo pensato di comprare una **Snapmaker J1S**, che ha 10 anni di funzionamento garantiti dal produttore.

Figura 30: stampante Snapmaker J1S, Snapmaker

MATERIALE

La scelta del materiale è ricaduta sull'**ABS** per il costo, le proprietà meccaniche e perché facilmente utilizzabile nello stampaggio.

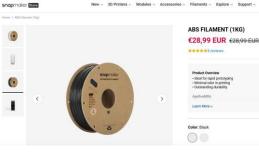


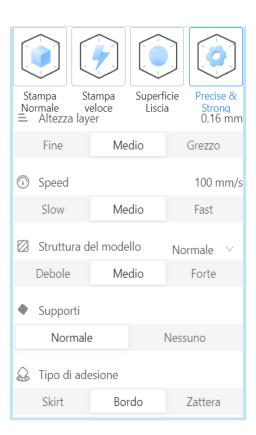
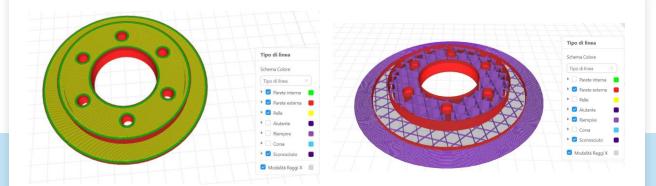
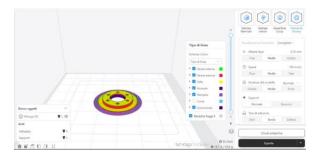
Figura 31: filamento ABS, Snapmaker

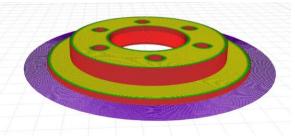
SOFTWARE E PARAMETRI

Per preparare il file di stampa:

- è stato utilizzato il software "Snapmaker Luban"
- abbiamo scalato opportunamente il pezzo sapendo che l'ABS si ritira dello 0,7%
- abbiamo messo il pezzo in orizzontale
- abbiamo selezionato un augello con il foro di diametro di 0,4mm.
- scelto un angolo critico di 40°
- scelto parametri che massimizzassero le proprietà meccaniche e riducessero il tempo di stampa allo stesso tempo

Figura 32: menù selezione dimensione ugelli


Figura 33: parametri di stampa selezionati

SCREEN STAMPA

Figura 34: quattro schermate di stampa della parte "Flange"

FOTO PEZZO STAMPATO

Figura 35: foto pezzo stampato

PRODUZIONE

COSTO PER UN PEZZO

MANODOPERA E TEMPI

I tempi che abbiamo stimato sono:

- pulizia ugelli: 5 min. - caricamento file: 1 min.

- livellamento piatto: 2 min. - preriscaldamento: 2 min.

- rimozione oggetto: 2 min.

- pulizia oggetto (bave e supporti): 10min.

Un operatore, però, lavora su 8 pezzi per ogni ciclo, quindi i tempi di "*rimozione oggettd*" e "*pulizia oggettd*" vanno

moltiplicati per otto.

 $€_{manodopera1pezzo} = (25 €/h * 1,77 h) / 8 = 5,53 €$

MATERIALE

Per la produzione di un pezzo (come indicato dal software) 0,1556 €/kWh] / 8 = **0,071 €**

Abbiamo pensato di comprare due stampanti, dove ognuna produce 8 pezzi in circa 24h.

servono 48,29 g (43,9 g per la stampa, più il 10% che si perde durante la pulizia e non solo).

 $€_{\text{materiale1pezzo}} = (28,99 € * 48,29 g) / 1000 g = 1,40 €$

€_{macchina1pezzo} = (0,027 €/h * 24,24 h) / 16 = **0,041** € **ENERGETICO**

MACCHINA

Per fare il calcolo, dobbiamo conoscere le potenze in fase di riscaldamento e di stampa:

essere usate per 10 anni:

 durante il riscaldamento di 2 min. (0,033 h), la macchina ha una potenza di 350W

• in fase di stampa (24,24 h), la potenza è di 150 W Ipotizzando un costo fisso dell'energia elettrica durante il giorno pari a 0,1556 €/kWh, il costo energetico per un

Avendo comprato due stampanti e sapendo che possono

pezzo ammonta a: $\epsilon_{\text{energia1pezzo}} = [(0.35 \text{ kW} * 0.033 \text{ h} + 0.15 \text{ kW} * 24.24 \text{ h}) *$

COSTO TOTALE

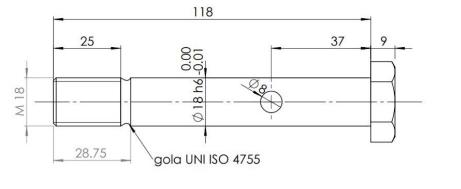
Sommando: $\epsilon_{\text{tot1pezzo}} = (5.53 + 1.40 + 0.041 + 0.071) \in = 7.042 \in$

PROCESSO DI ASPORTAZIONE DI TRUCIOLO

INTRODUZIONE

Pezzo: Shaft, pezzo n°7

Lotto: 140 pezzi


Greggio: semilavorato cilindrico D=30mm e

L=130mm

Materiale: acciaio C40

buona resistenza meccanica

- facilmente lavorabile alle macchine utensili
- sopportare i carichi e le sollecitazioni
- durezza e una resistenza a trazione elevate
- acciaio molto economico

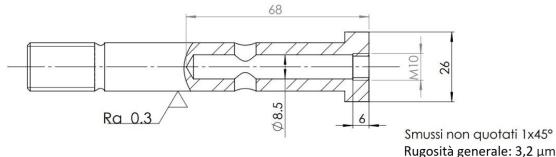


Figura 36: disegno tecnico della parte "Shaft"

INTRODUZIONE



Figura 37: numerazione delle superfici del pezzo "Shaft"

N° Sup.	Tipologia superficie	Processi Possibili
4,5	Cilindriche coassiali esterne	Tornitura
1,8	Piane ortogonali all'asse delle 4	Tornitura/Fresatura
3	Filettatura esterna	Tornitura
7	Cilindrica interna coassiale a 4	Tornitura/Foratura
9	Filettatura interna	Maschiatura
6	Cilindrica interna	Foratura
10	Piana	Fresatura
2	Smusso esterno	Tornitura
5	Cilindrica esterna	Rettifica

Tabella 6: elenco dei possibili processi

Abbiamo definito la sequenza delle lavorazioni dando priorità alla **logica economica e operativa**

N° Sup.	Processo
5,4,2,1,8,3	Tornitura
7,6	Foratura
10	Fresatura
5	Rettifica
9	Maschiatura

Tabella 7: processi di lavorazioni scelti per le nostre superfici

FOGLI DI CICLO

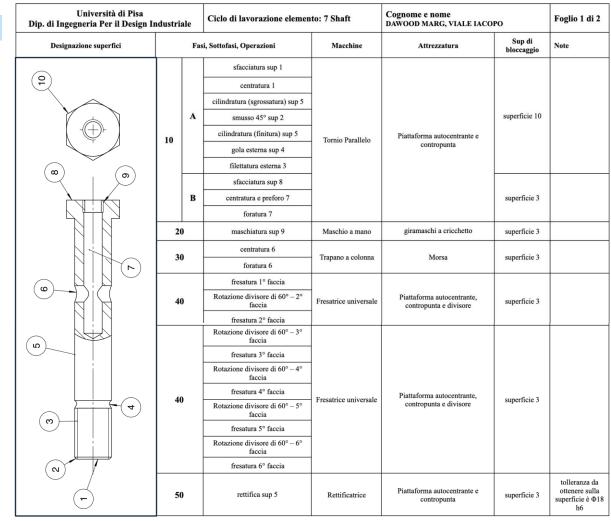


Figura 38: foglio di ciclo della parte "Shaft"

MACCHINE

TORNIO PARALLELO "GRAZIOLI" DANIA 25

Diametro massimo tornibile	[mm]	500
Foro mandrino	[mm]	78
Numero velocità mandrino	[N]	24
Giri al minuto mandrino	[rpm]	12÷1400
Motore asincrono trifase per mandrino	[HP]	10
Corsa trasversale	[mm]	250
Corsa portautensili	[mm]	140
Avanzamenti longitudinali e trasversali	[N°]	72
Gamma avanzamenti longitudinali	[mm/giro]	0.05÷1.17
Gamma avanzamenti trasversali	[mm/giro]	0.026÷0.585
Elettropompa centrifuga	[HP]	0.2

Tabella 8: specifiche del Tornio parallelo "GRAZIOLI" Dania 25

FRESATRICE A TESTA VELOCE LAGUN

Dimensioni tavola	[mm]	1372 x 280
Cave a T	[N°]	3
Velocità del mandrino	[rpm]	60÷4200
Corsa slittone	[mm]	570
Corsa asse X	[mm]	800
Corsa asse Y	[mm]	345
Corsa asse Z	[mm]	400
Inclinazione testa destra sinistra	[gradi]	90
Inclinazione testa avanti indietro	[gradi]	45
Corsa canotto	[mm]	127
Diametro canotto	[mm]	85.7
Motore principale	[HP]	4

Tabella 9: specifiche fresatrice a testa veloce Lagun

MACCHINE

RETTIFICA CILINDRICA VOUMARD 5A

Potenza	[kW]	7.5
Capacità	[mm]	ø5÷200x250
Distanza massima testa di lavoro - ruota	[mm]	550
Altezza punte	[mm]	180
Profondità massima di rettifica	[mm]	250
Diametro massimo di rettifica	[mm]	5÷200
Velocità della ruota	[Rpm]	3600÷40000
Velocità trasversale	[mm/min]	0÷10.000
Velocità di rotazione	[Rpm]	125÷1000

Tabella 10: specifiche rettificatrice cilindrica voumard 5A

TRAPANO A COLONNA AUDAX MODELLO 50 TI

Dimensioni piano	[mm]	550
Cono Morse	[N°]	4
Numero velocità mandrino	[N]	12
Giri al minuto mandrino	[rpm]	55÷600
Corsa canotto	[mm]	210
Diametro max	[mm]	50
Potenza	[HP]	3
Potenza	[Kw]	2.2

Tabella 11: specifiche trapano a Colonna AUDAX modello 50 TI

ATTREZZATURA

Figura 39: tre tipi di giramaschio dal catalogo "Würth"

GIRAMASCHIO

La maschiatura viene realizzata in maniera progressiva, agendo all'estremità in base al diametro che costituisce il filetto e poi terminando con il diametro del vertice del filetto.

Figura 40: tavola girevole dal catalogo "Fervi"

DIVISORE

Per realizzare la testa esagonale abbiamo deciso di utilizzare una tavola girevole o divisore, che ci permette di fare precise rotazioni del pezzo.

SFACCIATURA, SGROSSATURA E SMUSSO

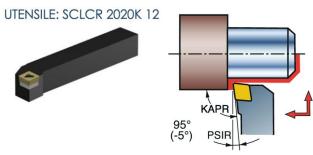


Figura 41: utensile SCLCR 2020K 12 dal catalogo "Sandvik" INSERTO: CCMT 12 04

Numero di taglienti (CEDC)	2
Diametro del cerchio inscritto (IC)	12,7 mm
Codice della forma dell'inserto (SC)	Rhombic 80
Lunghezza effettiva del tagliente (LE)	12,4959 mm
Raggio di punta (RE)	0,3969 mm

Figura 42: inserto CCMT 12 04 e le sue specifiche dal catalogo "Sandvik"

FINITURA

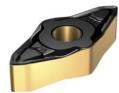

UTENSILE: CP-25BR-2020-12

Figura 43: utensile CP-25BR-2020-12 dal catalogo "Sandvik"

INSERTO: CP-B1208D-M7 4415

Numero di taglienti (CEDC)	4
Diametro del cerchio inscritto (IC)	12 mm
Raggio di punta (RE)	0,8 mm
Angolo di spoglia superiore dell'inserto (GAN)	18 °

Figura 44: inserto CP-B1208D-M7 4415 e le sue specifiche dal catalogo "Sandvik"

GOLA UNI ISO 4755

UTENSILE: SMALL 08C3

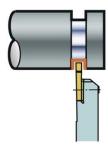


Figura 45: utensile SMALL 08C3 dal catalogo "Sandvik"

INSERTO: MAPL 3 080 1025

Numero di taglienti (CEDC)	2
Larghezza di taglio (CW)	0,8 mm
Raggio di punta (RE)	0,4 mm
Angolo di spoglia inferiore principale (AN)	6°

Figura 46: inserto MAPL 3 080 1025 e le sue specifiche dal catalogo "Sandvik"

FILETTATURA

UTENSILE: 266RFG-2525-22

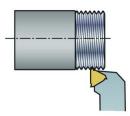


Figura 47: utensile 266RFG-2525-22 dal catalogo "Sandvik"

INSERTO: 266RG-22MM02A250E 1020

Tipo di filetto (TTP)	external
Passo della filettatura (TP)	2,5 mm
Tipo profilo della filettatura (TPT)	full profile
Numero di taglienti (CEDC)	3
Diametro del cerchio inscritto (IC)	12,7 mm
Versione (HAND)	Right

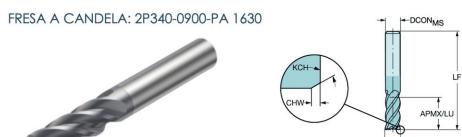
Figura 48: inserto 266RG-22MM02A250E 1020 e le sue specifiche dal catalogo "Sandvik"

FORATURA

UTENSILE PREFORO: 25922500500

Codice	d. punta	d. corpo	L totale	-	-	Prezzo
25922500500	5	12,5	63,5	-	-	23.00

Figura 49: utensile 25922500500 e le sue specifiche dal catalogo "Ettebi"


UTENSILE: 860.1-0850-080°1-PM P1BM

Diametro di taglio (DC)	8,5 mm
Lunghezza utile (LU)	80 mm
Angolo di spoglia superiore ortogonale (GAMO)	17,72°
Numero di taglienti effettivi sulla faccia (ZEFF)	2
Interfaccia adattatore lato macchina (ADINTMS)	Cylindrical shank (DIN6535-HA) -metric: 10

Figura 50: utensile 860.1-0850-080°1-PM P1BM e le sue specifiche dal catalogo "Sandvik"

FRESATURA

Numero di taglienti effettivi periferici (ZEFP)	4
Diametro di taglio (DC)	9 mm
Lunghezza utile (LU)	19 mm
Lunghezza funzionale (LF)	72 mm
Interfaccia adattatore lato macchina (ADINTMS) ①	Cylindrical shank (DIN6535-HA) -metric: 10

Figura 51: fresa a candela 2P340-0900-PA 1630 e le sue specifiche dal catalogo "Sandvik"

TRAPANO

PUNTA IN METALLO DURO: 462.1-0800-040°0-XM X2BM

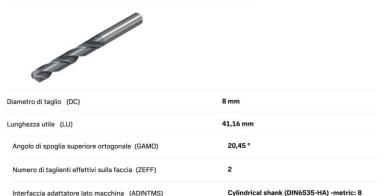
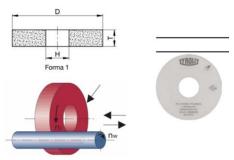


Figura 52: punta in metallo duro 462.1-0800-040°0-XM X2BM e le sue specifiche dal catalogo "Sandvik"

Figura 53: punte per maschiatura e le loro specifiche dal catalogo "Wurth"

MASCHIATURA


PUNTA PER MASCHIATURA:

Ø mm		/ mm	L mm	Cod. Ineco	Vecchio cod.
8,00	1,25	18,00	63,00	2780208X125	024.0108X125
10.00	1.50	24.00	70.00	2780210X15	024.0110X15

RETTIFICA

MOLA ABRASIVA: 89A 802 J5A V217 50

Forma	N. tipo	DxTxH	PxF	Specifica	Vmax m/s	Nota
1	690785	300x40x76,2		89A 802 J5A V217 50	50	
	889228	400x20x127		89A 802 J5A V217 50	50	•
	881114	400x25x127		89A 802 J5A V217 50	50	•
	39869	400x30x127		89A 802 J5A V217 50	50	Grossezza del grano 80
	620118	400x40x127		89A 802 J5A V217 50	50	Ra ca. 0,20-0,35 μm

Figura 54: specifiche della mola abrasiva 89A 802 J5A V217 50 dal catalogo "Tyrolit"

Dip.	Università di Pisa Dip. di Ingegneria Per il Design Industriale Fase di lav				one dell'elemento: 7 S	Cognome e	nome: IARG, VIALE	IACOPO	Foglio 1 di 5	
mater	ie prime	Materiale: acciaio	C40	Dimensioni: Φ30mm	L=130mm	Parametri di tagl	io	70 97		
fase	schizzo di lavorazione		opera	azione	utensile	P. macchina (kW)	P. di taglio	V. di taglio	n° giri	Note
lasc	SCHIZZO UI IAVOI AZIONE		nº	descrizione	utensite	rendim.to	nº passate	Profondità	Avanz.	Note
104	130.00	00	1	sfacciatura sup 1 da 130mm a	utensile: SCLCR 2020K 12	7.45	0.17	38.6	410	
IUA	10A	\$30			inserto: CCMT 12 04 12-PR 4335	0.7	1	1.5	0.15	
10A	118,90	01820	2	centratura sup 1	Punta da centro					
	118.00			cilindratura (sgrossatura) sup	utensile: SCLCR 2020K 12	7.45	0.25	29.6	314	
10A		\$10	3	5 da Φ30 mm a Φ20 mm	inserto: CCMT 12 04 12-PR 4335	0.7	4	1.25	0.4	

Tabella 12: foglio di lavorazione della parte "Shaft" foglio 1 di 5

Dip.	Università di l di Ingegneria Per il D		ale	Fase di lavorazione dell'elemento: 7 Shaft			Cognome e	nome: IARG, VIALE	IACOPO	Foglio 2 di 5	
mater	ie prime	Materiale: acciaio	C40	Dimensioni: Φ30mm	L=130mm	Parametr	i di tagl	io			
fase	schizzo di lavorazione		opera	zione	utensile	P. macchin	na (kW)	P. di taglio	V. di taglio	n° giri	Note
insc	Schizzo di lavorazione		n°	descrizione	utensite	rendim.to		n° passate	Profondità	Avanz.	11000
10A	19		4	smusso 45° sup 2	utensile: SCLCR 2020K 12		7.45	0.29	23.4	410	
10A				sinusso 43 sup 2	inserto: CCMT 12 04 12-PR 4335	0.7	8	1	1	0.8	
	0,99	t	cilindratura (finitura) sup 5 da	cilindratura (finitura) sup 5 da	utensile: CP-25BR-2020-12		7.45	0.053	34.54	550	
10A		t.	5	Φ20 mm a Φ18.2 mm	inserto: CP-B1208D-MZ 4415	0.7		3	0.3	0.2	
	28.75			realizzazione gola	utensile: SMALL O8C3		7.45	0.07	23.4	410	
10A	gola UNI SO 4755		6	UNI ISO 4755	inserto: MAPL 3 080 1025	0.7		3	2.5	0.05	

Tabella 13: foglio di lavorazione della parte "Shaft" foglio 2 di 5

Università di Pisa

Dip. di Ingegneria Per il Design Industriale

mater	materie prime Materiale: acciaio C40		C40	Dimensioni: Φ30mm L=130mm		Parametri di taglio				
	schizzo di lavorazione		operazione			P. macchina (kW)	P. di taglio	V. di taglio	n° giri	N. A.
fase			n°	descrizione	utensile	rendim.to	nº passate	Profondità	Avanz.	Note
	25.00				utensile: 266RRFG-2525-22	7.45	0.22	6.68	117	
10A	818		7	filettatura metrica M18	inserto: 266RG-22MM02A250E 1020	0.7	6	1.36	2.5	
					utensile: SCLCR 2020K 12	7.45	0.17	38.6	410	
10B	08.851		8	sfacciatura sup 8 da 128.5 mm a 127 mm	inserto: CCMT 12 04 12-PR 4335					
	oaast	3			:	0.7	1	1.5	0.15	
10B	Ø3000		9	centratura e preforo sup 8	Punta da centro e punta da preforo					realizzo un preforo con una punta di Φ5 mm

Foglio 3 di 5

Cognome e nome:

DAWOOD MARG, VIALE IACOPO

Fase di lavorazione dell'elemento: 7 Shaft

Tabella 14: foglio di lavorazione della parte "Shaft" foglio 3 di 5

Università di Pisa Dip. di Ingegneria Per il Design Industriale			ale	Fase di lavorazi	Cognome of DAWOOD M	e nome: IARG, VIALE	Foglio 4 di 5			
materi	ie prime	Materiale: acciaio	C40	Dimensioni: Φ30mm	L=130mm	Parametri di tagl	io			
fore	schizzo di lavorazione		opera	zione	utensile	P. macchina (kW)	P. di taglio	V. di taglio	n° giri	Note
fase	schizzo di lavorazione		n°	descrizione	utensile	rendim.to	n° passate	Profondità	Avanz.	Note
10B	- 66.00 		10	foro cieco Φ8.5 mm sup 7	860.1-0850-080A1-PM P1BM	7.45	0.47	19.8	700	eseguo 4 passate incrementando la profondità 2 da 16 mm e 2 da 18 mm, dopo ogni step estrarre la punta per evacuare il truciolo e lubrificare
20	6.00 0 IW		11	maschiatura manuale sup 9	sgross: 2780210X15 fin: 2790610X1	La rotazione avviene con velocità molto bassa, controllata dall'operatore. L'avanzamento non è costante, poiché c'è bisogno di frequenti inversioni per evacuare il truciolo.			utilizzo prima un maschio per sgrossatura per poi passare a un maschio finitore	
30	27.00		12	centratura sup 8	Punta da centro					

Tabella 15: foglio di lavorazione della parte "Shaft" foglio 4 di 5

Dip.	Università di di Ingegneria Per il D		ale	Fase di lavorazione dell'elemento: 7 Shaft			Cognome & DAWOOD M	nome: IARG, VIALE	ІАСОРО	Foglio 5 di 5
mater	ie prime	Materiale: acciaio	C40	Dimensioni: Φ30mm	L=130mm	Parametri di tagl	io			
fase	schizzo di lavorazione		opera	zione	todla	P. macchina (kW)	P. di taglio	V. di taglio	n° giri	Note
iase			n°	descrizione	utensile	rendim.to	n° passate	Profondità	Avanz.	Note
30	37,00 	-	13	foro passante Φ8 mm perpendicolare all'asse sup 6	462.1-0800-040A0-XM X2BM	0.7	0.053	15.1	0.11	
40		0	14	spianatura di una faccia della testa esagonale	2P340-0900-PA 1630	0.8	0.092	10.85	0.04	ruotare il pezzo di 120° con la tavola rotante e ripetere l'operazione per le restanti facce
50	Φ18.00 H6		15	rettifica sup 5	89A 802 J5A V217 50	7.5 0.85	0.01	0.05	0.8	

Tabella 16: foglio di lavorazione della parte "Shaft" foglio 5 di 5

TEMPI

Nella seguente tabella abbiamo riportato i tempi stimati precedentemente e calcolato per ogni operazione i tempi totali, secondo i nostri calcoli la realizzazione di un pezzo completo richiede circa 53 minuti.

OPERAZIONE	TEMPI ATTIVI	TEMPI PASSIVI	TEMPI TOTALI
sfacciatura	0.553	2.46 min	3.01 min
centratura	0.05	1.91 min	1.96 min
sgrossatura	3.822	2.46 min	6.28 min
smusso	0.012	2.06 min	2.07 min
finitura	3.245	2.06 min	5.31 min
gola	0.841	2.06 min	2.90 min
filettatura	0.554	3.46 min	4.01 min
	10A	TOT	25.5 min
sfacciatura	0.553	1.86 min	2.14 min
centratura	0.05	1.26 min	1.31 min
foratura	2	2.16 min	4.16 min
	10B	TOT	7.61 min
tornio	10	тот	33.15min
maschiatura	1.5 min	0.90 min	2.40 min
	20	тот	2.40 min
trapano	0.33 min	2.21 min	2.54 min
	30	тот	2.54 min
fresatura (6 facce)	1.50 min	11.86 min	13.36 min
	40	тот	13.36 min
rettifica	0.298 min	1.14 min	1.44 min
	50	тот	1.44 min

Tabella 17: tempi attivi, passivi e totali di lavorazione

COSTI

Operazione	quantità	Costo totale
Sgrossatura utensile	1	105.3€
Sgrossatura inserto	7	102.34€
Finitura utensile	1	110.7€
Finitura inserto	3	85.5€
Gola utensile	1	93.6€
Gola inserto	2	83.32€
Filettatura utensile	1	177 €
Filettatura inserto	1	57.38€
Preforo	1	23€
Foro	3	516€
Maschio sgrossatura	1	31.95€
Maschio finitura	1	6.95€
Fresa	1	139.04€
Trapano	1	55.93€
Mola	1	80€
	тот	1668€
	TOT per pezzo	11.91€

Per il costo del greggio siamo partiti da una barra cilindrica di diametro 0,03 m e lunghezza 0,130 m e prezzo al chilo del materiale, pari a 0,45 €/kg $V=9,189 \times 10^{-5} \text{ m}^3$ Densità=7850 kg/m³

Massa=0,721 kg

otteniamo un costo stimato di 0,33 €.

	TOT				€/min		€/pezzo
					2.127		22.85
Cmaschio	0.42				€/min	2.40	1.01
		8.3*10-5			0.420		
Cretifica	0.42				€/min	1.44	0.61
		0.0038	0.0017	2.6*10-5	0.426		
Ctrapano	0.42				€/min	2.54	1.07
		0.0017	0.0017	6.7*10-5	0.424		
Cfresa	0.42				€/min	13.36	5.58
		0.0125	0.0017	0.003	0.417		
Ctornio	0.42	0.0086	0.0017	0.009	0.440€/min	33.15	14.58
	MANODOPERA	MACCHINA	MANUTENZIONE	ENERGIA	TOT	Tp+ta	Cp(tp+ta)

Tabella 19: calcolo dei costi totali delle lavorazioni per la produzione di un pezzo

Tabella 18: ammortamento del costo totale degli utensili

Sommando i risultati otteniamo:

 $C_{tot/pezzo} = 22.85 \in +11.91 \in +0.33 \in = 35.1 \in /pezzo$

C_{tot}= 35.1€ * 140= **4912.6€**

PROCESSO DI DEFORMAZIONE PLASTICA

INTRODUZIONE

Pezzo: Plate, pezzo n°2

Lotto: 140 pezzi

Materiale: acciaio 42CrMo4

Acciaio legato a cromo e molibdeno

Buona forgiabilità a caldo

Elevata resistenza meccanica

 Facilmente rifinito con piccole lavorazioni meccaniche

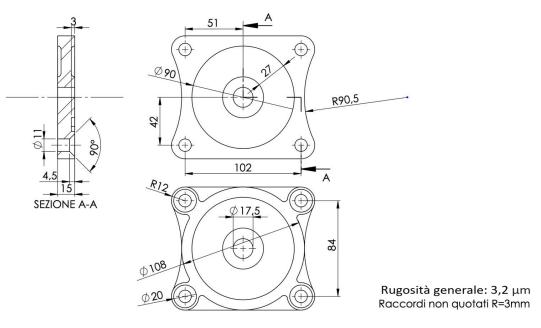


Figura 55: disegno tecnico del pezzo "Plate"

SCELTA DEL PROCESSO

In fase di analisi abbiamo valutato anche altre opzioni, come la deformazione a freddo e la fucinatura, ma non risultavano adatte, abbiamo quindi scelto di adottare lo **stampaggio**. È eseguito preferibilmente **a caldo** per ridurre le forze necessarie e i pezzi stampati presentano grandi caratteristiche meccaniche in quanto conservano il reticolo fibroso del laminato.

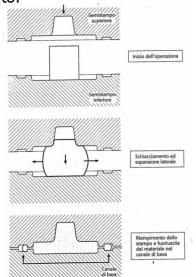


Figura 56: fasi del procedimento di stampaggio "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

SCELTA DEL PIANO DI BAVA

Per evitare sottosquadri abbiamo scelto come piano di bava il **piano orizzontale**, parallelo alla superficie superiore del pezzo e passante per il suo centro geometrico.

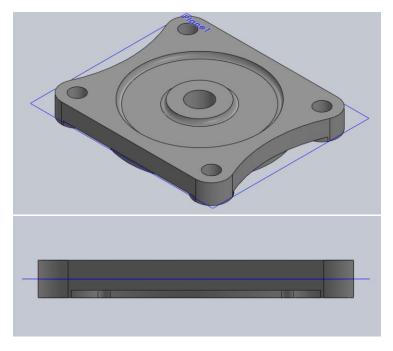


Figura 57: viste 3D della scelta del piano di bava

SOVRAMETALLI

Confrontandoci con la tabella riportata nel testo "Giusti-Santochi", nel nostro caso, risulta che tutte le dimensioni nominali sono minori di 400 mm e la lunghezza del pezzo minore di 300mm pertanto, per garantire le tolleranze e le finiture, abbiamo aggiunto uno strato di **sovrametallo di 3mm** sulla superficie dei pezzi.

	Lunghezza del pezzo (mm)							
Dimensioni nominali (mm)	≤ 100	100 ÷ 300	300 ÷ 500	500 ÷ 1000				
≤ 50	1,8 ÷ 2,3	1,8 ÷ 2,3	2,3 + 3,1	3 ÷ 3,4				
50 ÷ 75	2 ÷ 3	2+3	2,5 ÷ 3	3,5 ÷ 4				
75 ÷ 100	2 + 3,5	2 ÷ 3,5	3 ÷ 3,5	3,5 + 4,5				
100 ÷ 400	3 ÷ 3,5	3 ÷ 4	3,5 ÷ 4,5	4,5 ÷ 5				
400 ÷ 800	4 ÷ 4,5	4 ÷ 5	4,5 + 5	5 + 5,5				
800 ÷ 1000	4 ÷ 5	4,5 ÷ 5,5	5,5 ÷ 6	5 + 6,5				

Tabella 20: valori indicativi dei sovrametalli sui greggi di stampaggio "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

ANGOLI DI SFORMO

Come valore per gli angoli di sformo è stato scelto **1**°, in considerazione dello spessore del pezzo, compreso tra 13 mm e 19 mm.

Questo valore consente un agevole distacco del pezzo dallo stampo durante la deformazione plastica, riducendo il rischio di difetti superficiali o di danneggiamento del componente.

Profondità della caratteristica		Spessore minimo/	angolo di spogl
6,35 mm	<1 mm / 0,5°		
13 mm	<1 mm / 1°	<1,5 mm / 0,5°	2
19 mm	<1 mm / 2°	<1,5 mm / 1°	<2 mm / 0,5°
25 mm		<1,5 mm / 2°	<2 mm / 1°
38 mm			<2 mm / 2°
51 mm			

Tabella 21: valori indicativi per gli angoli di sformo

RAGGI DI RACCORDO

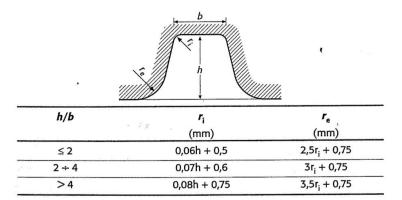
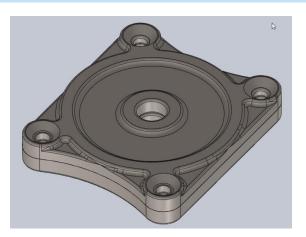


Tabella 22: valori minimi di raggi di raccordo per i greggi di stampaggio "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

Nel nostro pezzo il rapporto h/b≈0,56 ci colloca nella prima riga della tabella di riferimento.

Di conseguenza:


Raggio interno:

ri=0.06*15+0.5=1.4 mm

Raggio esterno:

re=2.5*ri+0.75= 4.25mm

GREGGIO DI STAMPAGGIO

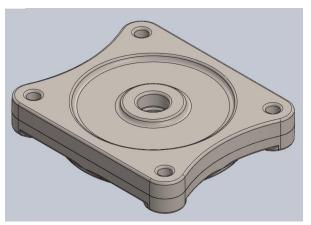


Figura 58: modello 3D del "Plate" con le modifiche per lo stampaggio

DIMENSIONAMENTO CANALE DI BAVA

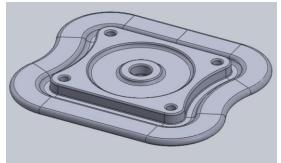
L'area dell'impronta del pezzo sul piano di bava:

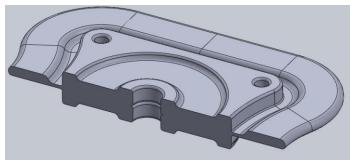
A=11833.33 mm²

 $l = 0.0175\sqrt{A} = 1.904 = 2 \text{ mm}$

Dalla tabella riportata ottengo:

h= 5 mm r= 1.5 mm m=9 mm n= 25 mm


R= (2.5÷3) r+0.5= 4.25 mm


Piano division dello stampo	ne m	n	
<u> </u>		1 _R	R. h

l (mm)	h (mm)	r (mm)	m (mm)	n (mm)
0,6	3,3	1	6	18
0,8	3,4	1	6	20
1	3,5	1	7	22
1,6	4,3	1	8	22
2	5	1,5	9	25

 $R \equiv (2,5+3)r + 0,5; \ l = 0,0175\sqrt{A}; A = {
m area \ dell'impronta \ del \ pezzo \ misurata \ sul \ piano \ di \ bava.}$

Tabella 23: dimensionamento del canale di bava "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

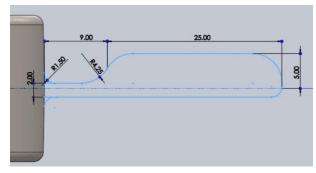


Figura 59: modello 3D del "Plate" con il canale di bava

Figura 60: quote della sezione del canale di bava

DIMENSIONAMENTO DELLO STAMPO

Partendo dalle dimensioni del pezzo (**lunghezza**, **larghezza e altezza**), è possibile ricavare, utilizzando i grafici di riferimento, i parametri **fl, fb e fh**. Successivamente, applicando le formule indicate, questi valori consentono di determinare le dimensioni finali dello stampo (**L, B, H**):

l= 108	b=125.5	h= 21	
fl=2.1	fb=2.1	fh=7.6	
L=226.8	B=263.55	H=159.6	

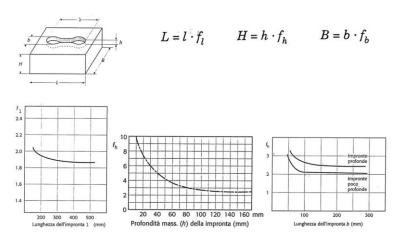
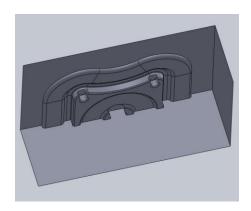
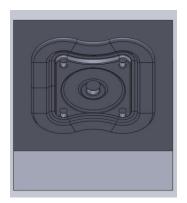




Figura 61: grafici per il calcolo delle dimensioni degli stampi "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

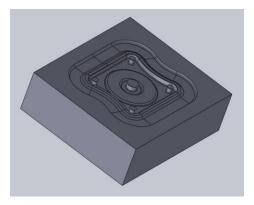


Figura 62: modello 3D dello stampo per il "Plate"

SCELTA DELLA PRESSA

Abbiamo optato per la realizzazione del nostro pezzo tramite una **pressa idraulica**. Il funzionamento si basa sull'olio in pressione che muove dei pistoni idraulici, garantendo una trasmissione di forza costante e uniforme in ogni punto del ciclo di lavoro.

Questo tipo di pressa permette la possibilità di regolare facilmente la velocità di lavoro; inoltre, può sviluppare forze molto elevate, risultando ideale per lavorazioni gravose e per pezzi di spessore consistente come il nostro.

Nello specifico abbiamo scelto la pressa idraulica **Tigermetal 200 t** scelta dal catalogo "Tigermetal".

Motore	[kW]	7.5
Tensione	[V]	400
Elevazione	[mm]	400
Pompa olio	[L/min]	21
Pressione nominale	[kN]	1850
Max pressione di lavoro	[bar]	320
Velocità di caricamento	[mm/s]	12
Velocità di discesa	[mm/s]	8

Figura 63: pressa idraulica Tigermetal 200 t e le sue specifiche

PARAMETRI DI LAVORAZIONE

Area di sezione sul piano di bava: Ab=12377.46 mm²= 0.01237746 m²

Volume del pezzo: V= 217215.2 mm³

Altezza media: $h_m = \frac{V}{4h} = 17.55 \text{mm} = 0.01755 \text{m}$

Altezza del pezzo: h₀= 21mm

Deformazione media: $\varepsilon_{\rm m} = \ln(\frac{h0}{hm}) = 0.179$

Velocità media di deformazione: $\varepsilon = \frac{v}{hm} = 2.85$

v = velocità di discesa della pressa Confrontando la tabella 24, ipotizziamo v= 0.05m/s.

Flow stress medio:

 $\theta_{\rm f}$ = C* ε^m =86.3

Dove C=70 e m=0,2 (dalla tabella 25)

Forza di stampaggio:

 $P=K^* \theta_f *A=7,4 kN$

K = costante che tiene conto della complessità del pezzo ed è compresa normalmente circa tra 3 e 12 Considero un valore intermedio K=7.

Macchina		Energia disponibile (kN·m)	Forza disponibile (t)	Velocità media (m/s)
Maglio a semp	olice effetto	40-100		4-5
Maglio a dopp	oio effetto	50-250		5-8
Maglio a conti	raccolpo	200-2000		4-10
Pressa a vite			50-2000	0,5-1
Pressa oleodinamica			300-30 000	0,05-0,30

Tabella 24: prestazioni tipiche di maglie e presse "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

Materiale	Temperatura (°C)	C (Mpa)	m
Leghe di Al	200-500	300-40	0,05-0,02
Leghe di Cu	200-800	400-20	0,02-0,3
Acciai			
• bassa % C	900-1200	170-50	0,08-0,20
• media % C	900-1200	180-55	0,07-0,25
• inossidabili	600-1200	420-40	0,02-0,4

Tabella 25: valori indicativi dei parametri C e m "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

TEMPI

FASE	TEMPO [min]
Posizionamento grezzo	0.1
Ciclo pressa (chiusura + colpo + riapertura)	1.5
Estrazione e controllo visivo	0.15
Rifilatura a caldo (bava)	0.5
TOT per pezzo	2.25 min
TOT lotto	315 min

Tabella 26: valori stimati dei tempi di lavorazione per deformazione plastica

COSTI

MACCHINA

Abbiamo stimato una durata della pressa di 20 anni:

Prezzo: 18683€ Minuti lavorativi in un anno:

250gg*8h*60=39600

costo_{pressa/anno}=934€

costo_{pressa/minuto}=anno/min lavorativi= 0.02359€/min

Costo_{macchinaperpezzo}= **0.053€**

Costo_{macchinaperlotto}= 7.43€

MANODOPERA

Abbiamo assunto un costo orario di 25€/h per operaio, ottenendo quindi un costo unitario al minuto di 0.42€/min.

Costo_{manodoperaperpezzo}= **0.95€**

Costo_{manodoperaperlotto}= 132.3€

COSTO TOTALE PER PEZZO

C_{tot}=0.053€+0.95€+1.615€+8.83€= **11.45**€

GREGGIO:

Per il nostro pezzo abbiamo scelto l'acciaio 42CrMo4 che ha un prezzo al chilo di 0.95€/Kg:

Densità: 7.85g/cm³

Volume=217215.26 mm³= 217.22 cm³

Peso del pezzo=1705.2g=1.7 kg

Costo_{materialeperpezzo}= **1.615€**

Costo_{materialeperlotto}= 226.10€

STAMPO:

Lo stampo è stato realizzato in Acciaio H13, che ha un costo al chilo di 6€/Kg:

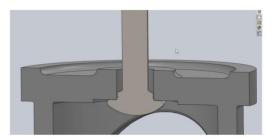
Densità= 7.8 g/cm³

V=264*227*160=9588480 mm³= 9588,48 cm³

Peso= 74790g= 72.79kg

Inoltre abbiamo stimato un costo aggiuntivo di 800€ che si rifierisce alle lavorazioni meccaniche

Costo_{stampo}= 1236.74€


Costo_{stampoperpezzo}= 8.83€

PROCESSO DI SALDATURA

INTRODUZIONE

La saldatura verrà fatta tra la vite M12 ISO 8678 di classe 4.8 realizzata con un acciaio a basso tenore di carbonio e il frame (realizzato precedentemente per fusione) in acciaio C45; questo è saldabile, ma richiede alcune precauzioni per evitare la formazione delle cricche quindi, sia per il materiale che per lo spessore del frame di 15mm, occorre preriscaldare il pezzo.

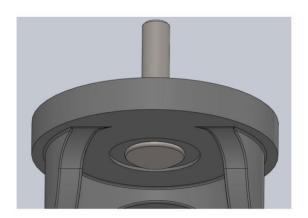


Figura 64: modelli 3D del frame e della vite

PROCESSO

Abbiamo scelto come processo la **saldatura GMAW** (MIG/MAG).

In particolare, abbiamo optato per la variante **MAG**, che impiega gas attivi, rivelandosi la soluzione più adatta alle nostre esigenze.

I vantaggi principali di questo processo sono:

- l'elevata produttività
- la possibilità di scegliere fili di diametro diverso
- la velocità elevata del processo
- l'ottima adattabilità a sistemi di saldatura meccanizzata

Inoltre il contenuto costo degli impianti e dei materiali, rende la saldatura MIG/MAG una soluzione economicamente vantaggiosa.

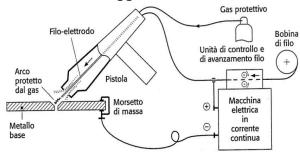


Figura 65: schema della saldatura GMAW "Tecnologia meccanica e studio di fabbricazione – Santochi, Giusti"

MACCHINA

TELWIN TECHNOMIG 260 DUAL SYNERGIC | SALDATRICE MULTI-PROCESSO (MMA, MIG MAG, TIG) dal catalogo "Telwin"

Tensione di alimentazione	[Hz]	50-60
Spessore filo	[mm]	0.6-1.2
Campo di regolazione	[A]	20-250
Corrente assorbita	[kW]	3.3
Diametro bobine utilizzabili	[mm]	200 e 300

Figura 66: saldatrice multi-processo Telwin Technomig 260 dual synergic e le sue specifiche dal catalogo "Telwin"

PARAMETRI

- Per il processo di saldatura MAG, l'alimentazione elettrica viene effettuata esclusivamente in corrente continua con polarità inversa
- la modalità di trasferimento del metallo più adatta è la spray arc
- gas di protezione: tra le miscele comunemente impiegate (Ar–CO₂, Ar–O₂ o Ar–CO₂–O₂), abbiamo scelto una miscela composta da 80% Argon e 15% CO₂
- Filo d'apporto: filo ER70S-6 (SG2), dal catalogo "Würth", un filo pieno ramato idoneo alla saldatura sotto protezione di CO2 pura o miscele Ar/CO2 su acciai al carbonio
- Diametro filo di apporto: 1 mm
- Corrente: 210ATensione: 25V
- Tensione: 25V
 Stickout: 15mm
- Velocità di avanzamento filo: 9m/min
- Cordone: Verrà realizzato un cordone circolare attorno alla testa della vite.

TEMPI

Operazione	Tempo [min]
Preparazione pezzi	0.5
Preriscaldamento pezzo	1
Posizionamento vite	0.5
Saldatura	1.5
Raffreddamento	1
Controllo	0.8
TOT PER PEZZO	5.3 min
TOT PER LOTTO	742 min

Tabella 27: stima dei tempi di lavorazione per saldatura

COSTI

MACCHINA

Abbiamo stimato una durata della saldatrice di 10 anni:

costo_{saldatrice/anno=}1197€

Minuti lavorativi in un anno: 250gg*8h*60=39600

costo_{saldatrice/minuto}= costo_{saldatrice/anno}/min lavorativi= 0.030€/min

Costo_{macchinaperpezzo}= **0.16€** Costo_{macchinaperlotto}= 22.26€

Prezzo macchina: 11970€

MANODOPERA

Abbiamo assunto un costo orario di 25€/h per operaio, ottenendo quindi un costo unitario al minuto di 0.42€/min.

Costo_{manodoperaperpezzo}= **2.23€** Costo_{manodoperaperlotto}= 311.6€

ATTREZZATURA

Materiale da asporto: Filo bobina da 5kg: 26€

Gas attivo: Bombola: 129€

Costo_{perpezzo}= 155€/140pz=1.1€

COSTO TOTALE PER PEZZO C_{tot}=0.16€+2.23€+1.1€= 3.50€

METROLOGIA

NORMATIVA

Per fare un campionamento corretto, ci siamo aiutati con la "ISO 2859-1", analizzando sei parametri:

- dimensione lotto
- sicurezza: è una misura critica o no
- AQL (Livello di Qualità Accettabile): severo, standard e lieve (A = errori accettabili | R = errori per rifare il lotto)
- se il processo di produzione è stabile e controllato
- se le misure sono costose/lente
- requisiti clienti

ISO 2859-1 - Livelli di ispezione e AQL

Lotto	Cod.	Livello	Campioni	AQL 0.65 A/R	AQL 1.0 A/R	AQL 2.5 A/R
2-8	Α	1	2	0/1	0/1	0/1
		П	2	0/1	0/1	0/1
		III	3	0/1	0/1	0/1
9-15	В	1	2	0/1	0/1	0/1
		П	3	0/1	0/1	0/1
		Ш	5	0/1	0/1	0/1
16-25	С	1	3	0/1	0/1	0/1
		Ш	5	0/1	0/1	0/1
		Ш	8	0/1	0/1	0/1
26-50	D	1	5	0/1	0/1	0/1
		Ш	8	0/1	0/1	1/2
		Ш	13	0/1	1/2	1/2
51-90	Е	1	5	0/1	0/1	1/2
		П	13	0/1	1/2	1/2
		Ш	20	1/2	1/2	2/3
91-150	F	- I	8	0/1	1/2	1/2
		Ш	20	1/2	1/2	2/3
		Ш	32	1/2	2/3	3/4
151-280	G	1	13	1/2	1/2	2/3
		П	32	1/2	2/3	3/4
		Ш	50	2/3	3/4	5/6
281-500	Н	1	20	1/2	2/3	3/4
		II	50	2/3	3/4	5/6
		III	80	3/4	5/6	7/8
501-1200	J	1	32	2/3	3/4	5/6
		п	80	3/4	5/6	7/8
		III	125	5/6	7/8	10/11

Tabella 28: ISO 2859-1

PEZZI

FRAME

Selezione parametri facendo riferimento alla norma:

- •lotto: 140 pz → Cod. F
- □32 campioni
- □presenza di alcune tolleranze
- \rightarrow Lvl. 3
- $\Box AQL \rightarrow 0.65$

Strumenti e tempi:

- □micrometro per la tolleranza G7 → 20 sec.
- □tampone passa non passa per la tolleranza $F7 \rightarrow 5$ sec.

PLATE

Selezione parametri facendo riferimento alla norma:

- lotto: 140 pz \rightarrow Cod. F
- 20 campioni
- presenza di alcune tolleranze
 → I vl. 2
- AQL \rightarrow 2,5

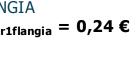
Strumenti e tempi:

- 4 misure uguali con il calibro per posizionamento fori → 20 sec.
- calibro per misure relative al foro centrale → 15 sec.

FLANGIA

Selezione parametri facendo riferimento alla norma:

- lotto: 280 pz → Cod. G
- 8 campioni
- presenza di alcune tolleranze
 → Lvl. 1 (perché il pezzo è in
 plastica, facilmente
 deformabile e quindi
 sistemabile, e costo
 relativamente basso)
- AQL \rightarrow 2,5


Strumenti e tempi:

- calibro conico per la conicità
 → 10 sec.
- calibro per posizione 6 fori uguali → 25 sec.

SHAFT
Le filettature servono per un ingrassatore e per un dado perciò, sarebbe una spesa eccessiva quella di comprare un anello filettato M18 e un passa non passa M10 filettato.
Poiché è l'elemento centrale della ruota ed ha una tolleranza stringente sul diametro, abbiamo deciso di misurare tutto il lotto di 140 pezzi perciò, dobbiamo cercare di utilizzare strumenti precisi e veloci; ovviamente saranno costosi, però la spesa verrà ammortizzata sull'intero lotto e non su un numero ristretto di campioni.
Strumenti e tempi:
$□$ calibro a forcella 18 h6 \to 5 sec. $□$ calibro per lunghezza \to 15 sec.

COSTI			
MANODOPERA E TEMPI MISURA	STRUMENTI E COSTI PER PEZZO	TOTALE PER I SINGOLI PEZZI	
FRAME $ \mathbf{\epsilon_{op1frame}} = [(20 \text{ s} + 5 \text{ s} + 15 \text{ s}) * 32 * 6,94 * 10^{-3} \notin /s] / 140 = 0,063 \in $	CALIBRO DECIMALE Viene utilizzato per: frame (140 pz), plate (140 pz), flangia (280 pz) e shaft (140 pz),	FRAME € _{metr1frame} = 2,54 €	
PLATE	per un totale di 700 pz. € _{calibro1pezzo} = 59,78 € / 700 = 0,085 €	PLATE € _{metr1plate} = 0,12 €	
€_{op1plate} = [(20 s + 15 s) * 20 * 6,94 * 10 ⁻³ €/s] / 140 = 0,035 €	MICROMETRO Viene utilizzato solamente per il frame (140	-metriplate -/	
FLANGIA	pz). € _{micrometro1pezzo} = 280,88 € / 140 = 2,01 €	FLANGIA € _{metr1flangia} = 0,24 €	
E _{op1flangia} = $[(10 \text{ s} + 25 \text{ s}) * 8 * 6,94 * 10^{-3}]$ E/s] / 280 = 0,0069 €	TAMPONE PASSA NON PASSA Ø18 F7 Viene utilizzato solamente per il frame (140		
	pz) € _{tampone1pezzo} = 53,31 € / 140 = 0,38 €	SHAFT € _{metr1shaft} = 1,90 €	
SHAFT € _{op1shaft} = [(15 s + 5 s) * 140 * 6,94 * 10 ⁻³ €/s] / 140 = 0,14 €	CALIBRO CONICO Viene utilizzato solo per la flangia (280 pz). € _{calconi∞1pezzo} = 40,98 € / 280 = 0,15 €		
	FORCELLA PASSA NON PASSA Ø18 H6 Viene utilizzato solo per lo shaft (140 pz). € _{forcella1pezzo} = 232,26 € / 140 = 1,66 €		

STRUMENTI

Figura 67: tampone passa non passa, Hoffmann Ø18 F7, 53,31€



Figura 68: calibro decimale, Hoffmann, 59,78€

Figura 69: forcella passa non passa Ø1 8 H6, Hoffmann, 232,26€

Figura 70: calibro conico, Leroy Merlin, 40,98€

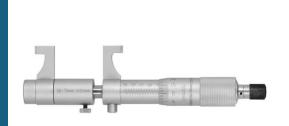


Figura 71: micrometro, Hoffmann, 280,88€