iigs
N

UNIVERSITY
OF LJUBL]JANA

FS

Faculty of
Mechanical Engineering

Ziga Campa

DC motor, clutch and brake control

Final seminar for the course Mechatronic Actuators

Mentors: Primoz Podrzaj, Tomaz Pozrl

Ljubljana, 2025

Contents

11 Description|
[1.1 Use for product|
1.2 Similar products|

2 Components description|

2.1 DCmotor] L

13 Assembly process|

4.1 Arduino program| e e e e

List of Figures

2 Robot drive Source: https://www.kuka.com/| 0.

4 Clutch Chain Tail Source: https://www.chaintail.com/|.
IS Brake Chain Tail Source: https://www.chaintail.com/|
{6 Microcontroler Arduino Uno Rev3 SMD Source: https://www.arduino.cc/ |
[Hbridge driver]

N DN

o W W W

ot

© O O s = W W NN

1 Description

1.1 Use for product

As part of the final seminar in the subject of mechatronic actuators, I made a drive train control
consisting of a DC motor, a clutch and a brake. The brake ensures that the drive axis remains in
its position, even when the motor is not working. The clutch in this system ensures an easier start
for the motor and protects it from excessive load. Due to easier operation and cheaper production,
I will control the drive train for my own needs via four buttons with relays. For demonstration
purposes at the faculty, the control was made via an Arduino Uno microcontroller and a power
part consisting of relays, motor drivers, buttons and a potentiometer.

Figure 1: Drive train

1.2 Similar products

Similar compositions like this are used mainly in two cases:

-Electrical cranes

Electric lifts use asynchronous motors that are controlled in an open loop via buttons. They still
use powerful AC brakes to hold the position..

-Robotic axis

Each joint in a 6-axis robot starts as a motor connected to a brake. Torque is then transferred
through reductors to the individual joint. The two assemblies differ primarily in the type of motor
(DC vs. asynchronous) and the type of control (open-loop vs. closed-loop servo control)

Figure 2: Robot drive Source: https://www.kuka.com/

2 Components description

2.1 DC motor

Manufacturer: BALDOR
Type: 509402 C

Voltage: 24 V DC
Current: 1.7 A

speed: 6.7 rpm
Reductor: 25.01:1
Magnet type: Permanent

The motor has 4 connections that can power 2 windings. The rear winding is used when we
need fine position adjustment, and the front winding is used when we want a more responsive
drive.

Figure 3: Motor BALDOR

2.2 Clutch

Manufacturer: Chain Tail
Type: ME10S4AC
Voltage: 24 V DC

El. power: 10 W

Max torque: 3.6 Nm

Figure 4: Clutch Chain Tail Source: https://www.chaintail.com/

2.3 Brake

Manufacturer: Chain Tail
Type: ALS0S2CV
Voltage: 24 V DC

El. power: 10 W

Max torque: 2 Nm

Figure 5: Brake Chain Tail Source: https://www.chaintail.com/

2.4 Microcontroler

Manufacturer: Arduino
Type: Uno Rev3 SMD
Microcontroler: ATmega328P
Voltage: 5V

Digital I/O pins: 14

Analog input pins: 6

PWM pins: 6

Clock: 16MHz

u
o
2-
=
2
a
o
=

Figure 6: Microcontroler Arduino Uno Rev3 SMD Source: https://www.arduino.cc/

3 Assembly process

Because this drivetrain was given to me by a friend, the first step was to identify the specifications
of its components. The motor in this drivetrain is quite unusual — it has four connectors, which
turned out to be for two separate windings. The windings had different resistances and produced
different speeds when connected to the same power source.

At the faculty lab, the lab assistant provided me with two motor drivers, an Arduino, and
all the necessary wiring. The first H-bridge driver is used to power the motor. This is necessary
because the maximum output voltage from the Arduino board is 5 V, while the motor operates at
24 V. The H-bridge driver is a board with two H-bridges, each built using eight transistors. These
two H-bridges were used to power the stronger and weaker windings of the motor. The 24 V power
was supplied by a lab power source.

The second motor driver is used to power the clutch and brake. This board is connected to both
24 V and 12 V power sources. It features one H-bridge, also built using transistors. To protect the
board from voltage spikes generated by the actuators, diodes were installed.

Figure 8: Motor driver

© o N o v A W N e

The final step in the assembly process was wiring the buttons and the potentiometer. All
components are powered from the Arduino’s 5 V output. The buttons are wired in a normally
closed (NC) configuration.

4 Microcontroler code
The program controlling the drivetrain is based on a finite state machine. It consists of five states:
Start
MotorLeft1
MotorLeft2
MotorRight1
MotorRight2

The Start state is the initial state after boot-up. In this state, all actuators are powered off.
From the Start state, the program can transition to either MotorLeft1 or MotorRight1, depending
on whether button 1 or button 2 is pressed, respectively. A button press is detected when the
Arduino input pin reads 0 V.

In the MotorLeft1 and MotorRight1 states, the low-power windings of the motor are activated,
causing the drivetrain to spin in the specified direction for 250 milliseconds. During this phase,
part of the drivetrain rotates without any mechanical load. After this period, the program either
returns to the Start state or transitions to MotorLeft2 or MotorRight2, depending on the input
conditions.

The MotorLeft2 and MotorRight2 states activate the high-power windings and deactivate the
low-power windings. In addition, the clutch and brake are also engaged in these states. The con-
troller remains in either MotorLeft2 or MotorRight2 as long as the corresponding button is held
down. Once the button is released, the program transitions back to the Start state.

4.1 Arduino program

// Input declarations
#define buttonl 13
#define button2 12
#define potentiometer AO

// Output declarations
#define M1_HS1 8
#define M1_LS1
#define M1_HS2
#define M1_LS2
#define M2_HS1
#define M2_LS1
#define M2_HS2
#define M2_LS2 3
#define BRAKE 11
#define CLUTCH 10

N O O N O

// Variables
int potentiometerValue;
int pwmValue;

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

46

a7

48

49

50

51

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

void setup() {
// Input settings
pinMode (buttonl, INPUT);
pinMode (button2, INPUT);

// Output settings

pinMode (CLUTCH, OUTPUT);
pinMode (BRAKE, OUTPUT);
pinMode (M1_HS1, OUTPUT);
pinMode (M1_LS1, OUTPUT);
pinMode (M1_HS2, OUTPUT);
pinMode (M1_LS2, OUTPUT);
pinMode (M2_HS1, OUTPUT);
pinMode (M2_LS1, OUTPUT);
pinMode (M2_HS2, OUTPUT);
pinMode (M2_LS2, OUTPUT);

}

// Naming states for use in switch-case
enum State {

Start,

MotorLeftl,

MotorLeft2,

MotorRight1l,

MotorRight2,
3

// Function definitions

void State_Start () {
digitalWrite (CLUTCH, LOW);
digitalWrite (BRAKE, LOW);
digitalWrite (M2_HS1, LOW);
digitalWrite (M2_LS1, LOW);
digitalWrite (M2_HS2, LOW);
digitalWrite (M2_LS2, LOW);
digitalWrite (M1_HS1, LOW);
digitalWrite (M1_LS1, LOW);
digitalWrite (M1_HS2, LOW);
digitalWrite (M1_LS2, LOW);

}

void State_MotorLeft1 () {
potentiometerValue = analogRead(potentiometer);
pwmValue = map(potentiometerValue, O, 1023, O,

analogWrite (M1_HS1, 255);
analogWrite (M1_LS1, 0);
analogWrite (M1_HS2, 0);
analogWrite (M1_LS2, pwmValue);
delay (250) ;

}

void State_MotorRightl () {
potentiometerValue = analogRead(potentiometer);
pwmValue = map(potentiometerValue, O, 1023, O,

analogWrite (M1_HS1, 0);
analogWrite (M1_LS1, pwmValue);
analogWrite (M1_HS2, 255);

255) ;

255) ;

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

analogWrite (M1_LS2, 0);
delay (250) ;
}

void State_MotorLeft2() {
digitalWrite(CLUTCH, HIGH) ;
digitalWrite (BRAKE, HIGH);

potentiometerValue = analogRead(potentiometer);
pwmValue = map(potentiometerValue, O, 1023, 0, 255);

analogWrite (M2_HS1, 0);
analogWrite (M2_LS1, pwmValue);
analogWrite (M2_HS2, 255);
analogWrite (M2_LS2, 0);
delay (200) ;

}

void State_MotorRight2() {
digitalWrite (CLUTCH, HIGH);
digitalWrite (BRAKE, HIGH);

potentiometerValue = analogRead(potentiometer);
pwmValue = map(potentiometerValue, O, 1023, 0, 255);

analogWrite (M2_HS1, 255);
analogWrite (M2_LS1, 0);
analogWrite (M2_HS2, 0);
analogWrite (M2_LS2, pwmValue);
delay (200) ;

}

// Start in the Start state
State currentState = Start;

void loop() {
switch (currentState) {
case Start:

State_Start ();

if (digitalRead(buttonl) == LOW) {
currentState = MotorLeftl;

} else if (digitalRead(button2) == LOW) {
currentState = MotorRightil;

}

break;

case MotorLeftl:
State_MotorLeftl () ;

if (digitalRead(buttonl) == HIGH) {
currentState = Start;

} else {
currentState = MotorLeft2;

}

break;

case MotorLeft2:
State_MotorLeft2();

if (digitalRead(buttonl) == HIGH)
currentState = Start;
break;

143
144

145

147

148

149

150

151

152

153

154

155

156

157

158

case MotorRightl:
State_MotorRightl1 () ;

if (digitalRead(button2) == HIGH) {
currentState = Start;

} else {
currentState = MotorRight2;

}

break;

case MotorRight2:
State_MotorRight2();

if (digitalRead(button2) == HIGH)
currentState = Start;
break;
}
}
!'button1

this state lasts for
200 milliseconds

this state lasts for
250 milliseconds

200 milliseconds

! ttont)
e button2 - >
' . this state lasts for

| button1 ! button2

button2

this state lasts for
250 milliseconds

Figure 9: State machine

	Description
	Use for product
	Similar products

	Components description
	DC motor
	Clutch
	Brake
	Microcontroler

	Assembly process
	Microcontroler code
	Arduino program

