
Cene Trček

AUTOMATING ROOF WINDOW BLIND

Project for Mechatronic Actuators

Ljubljana, June 2025

Contents

1 Introduction 2

1.1 Problem definition . 2

2 The plan and components used 2

2.1 17HS8401 Stepper motors . 3
2.2 Arduino UNO . 4
2.3 Keyestudio CNC Shield V2 . 4
2.4 Limit switches . 5
2.5 Cables . 6

3 Execution of plan 6

3.1 Designing finite state machine . 6
3.1.1 Development environment . 7
3.1.2 State machine code V1 . 7

3.2 3D printed parts . 9
3.3 Mounting actuators and first tests . 9
3.4 Installing limit switches . 10
3.5 Actually controlling blind movement without PC . 10

3.5.1 State machine code V2 . 11
3.6 Finishing up . 14

4 Analysis 16

4.1 Future plans . 16
4.2 Final thoughts . 16

List of Figures

1 original state of the roof window . 2
2 Plan for part placement . 3
3 Experiment used to measure the force needed to pull the blind down 4
4 Keyestudio CNC shield V2 [3] . 5
5 W-15-102C switch . 5
6 How I envisioned placing the switch . 5
7 Reed switch . 6
8 Reed switch used by bike computer to count revolutions of wheel [4] 6
9 First version of state machine . 7
10 Motor holder . 10
11 Rope attachment . 10
12 Pulley . 10
13 Reed switch before it was inserted into protective tube . 11
14 Reed sensor mounted on window frame in lower position, with other cable leading to upper sensor 11
15 Second version of state machine lets user control blind using a single button 12
16 Red and black wires are connected form CNC shield’s power supply to Arduino’s 12 V power jack 14
17 Finished enclosure . 15
18 Finished enclosure with Arduino and G1 switch installed . 15
19 Finished project . 15
20 Finished project wiring diagram . 15

List of Tables

1 Microstepping Resolution Truth Table [7] . 10

1

1 Introduction

My parents have a big roof window in their bedroom, which we installed the window about 10 years ago.
Although the window is meant to provide plenty of natural light, it didn’t - because the blind was kept closed
most of the time. We found opening the blind difficult due to sheer size and height of the window. While it
was possible to use a stick to operate it, the process was impractical and time-consuming.

When brainstorming ideas for project work, my mom suggested automating this blind, which seemed like a
great idea! Project was just complex enough to complete within the three weeks I had left.

1.1 Problem definition

To set the stage, let’s first take a look at the initial situation of the window, shown in figure 1. The bottom
edge sits 2 meters above the floor, while the top reaches just below the ceiling, around 4 meters high. The
blind is 1.5 meters wide, which causes skewing of aluminum bar, if it’s not moved from the center. Project’s
requirements were the following:

• The blind should open and close automatically - with movement triggered either by button or by time
interval

• It should be controllable without using a phone (after I suggested a web interface)

• It must operate safely

• It should cause minimal damage to the window frame

Figure 1: original state of the roof window

A major limitation was that I couldn’t order any new components, as the deadline was tight and time was
running out. Fortunately, I had salvaged a wide range of components over the years, because, as they say,
everything becomes useful eventually.

2 The plan and components used

Now that I knew what to do, it was time to figure out how to do it. The hardest part was determining how to
move the blinds up and down using motors while keeping the setup as neat as possible. One advantage was that
the window does not need to be opened often, which simplified cable management. After inspection of window
and blind structure, I settled on placing two motors on bottom edge of window and connecting it to blind via
rope. I could theoretically install a motor behind the blind, but I figured out that this would be challenging
to do due to small amount of space available plus, it would significantly damage window in case of project
failure. To control the motion of the blind, I considered two options: closed-loop control with distance sensor

2

for precise position monitoring or implementing a finite state machine. I chose the latter, as precise positioning
isn’t necessary, and it’s simpler to implement. To support this approach, I added two limit switches at the ends
of the window to let the system know when it has reached the top or bottom position. A rough placement plan
of the components is shown in Figure 2.

Figure 2: Plan for part placement

2.1 17HS8401 Stepper motors

I planned to use two DC motors that I knew I had somewhere, but I just couldn’t find them. Only other motors
that seemed to be powerful enough were some steppers that I had left from my laser cutting machine project,
which I didn’t need anymore as I bought better machine since then. This also meant I could re-purpose laser
cutter’s Arduino UNO microcontroller and it’s CNC shield (more on that in section 2.3).

I couldn’t commit to using stepper motors without first confirming whether they could generate enough
force to pull the blind down. The blind is quite large, and so I thought that it likely requires significant force
to move.

To estimate actual force required to lower the blind, I performed a basic experiment using weights shown in
Figure 3. A rope was attached to the blind and passed over a smooth aluminum rod. I then hung weights to
the other end until the blind started to move.

The blind started moving at around 2.5 kg of mass. We can simply compute force required to pull blind
down using Newton’s second law of motion:

Fb = m · g = 2.5 · 9.81

Fb ≈ 25 N

(1)

I have two NEMA 17 17HS8401 [1] stepper motors with following characteristics:

• Holding torque min 52 N/cm

• Detent torque max 2.6 N/cm

I was unable to find an official pull-out torque curve for the motor. However, according to one source,
low-speed torque can be approximated as 80% of the holding torque [2] . Thus:

Tls = 52 · 0.8 ≈ 40 Ncm

3

Figure 3: Experiment used to measure the force needed to pull the blind down

The GT2 pulley that is mounted on stepper (visible in figure 10) has major radius of 0.65 cm, so force transferred
to rope is:

Fm =
Tls

r
=

40

0.65
= 60 N

This means that two motors working together will be able to lower the blind, as each would only need to
supply Fb

2
≈ 13 N of force. This estimate is really crude but It’s good enough for just figuring out if these

steppers will do the job.
Nevertheless, I acknowledge that DC motors would be a more suitable choice for this application, as they

caused some unwanted effects described in section 4.

2.2 Arduino UNO

This is a standard Chinese knockoff of the Arduino UNO microcontroller, which is widely used in the hobbyist
community due to its versatility in low-budget projects. It is based on the ATmega328P chip and offers a simple,
well-documented platform ideal for prototyping, learning, and integrating basic sensor or actuator control. Its
wide ecosystem of libraries and examples makes it especially beginner-friendly.

2.3 Keyestudio CNC Shield V2

I used Arduino in combination with the Keyestudio CNC Shield V2 shown in figure 4. It mounts directly on
top of the Arduino and provides a neatly organized interface for driving stepper motors. Its primary purpose is
to control small CNC machines in conjunction with the GRBL library, which parses G-code received over serial
communication into step and direction signals for the stepper drivers. Shield itself provides:

• pins for mounting three stepper drivers

• pins for connecting three bipolar stepper motors to said drivers

• support for adjusting stepping rate

• pins for connecting limit switches

• pins for sending PWM signal to tool (like spindle or laser module)

• Power supply input

• Miscellaneous I/O and serial pins

All pins that are intended for switches and tool control are just regular digital IO pins that can be reused
for any other task. We just need to trace which pin from Arduino is connected to what pin on shield.

4

Figure 4: Keyestudio CNC shield V2 [3]

2.4 Limit switches

Initially, I considered using W-15-102C (see figure 5) limit switches salvaged from old washing machines. The
idea was to mount the switches on the window frame so that the aluminum bar of the blind would press the
tiny switch button. In practice, this turned out to be tricky as the switch was too big to fit in the narrow gap
between the window frame and the blind profile (see figure 6). I also tried attaching the switch directly to the
frame and triggering it with a 3D-printed part glued to the edge of the blind profile. That didn’t work either,
as the parts kept coming unglued. Best solution would be to screw 3D printed part directly into profile, but
that would require disassembling the entire thing.

Figure 5: W-15-102C switch

Figure 6: How I envisioned placing the switch

When I was desperately trying to find solution, I got idea to use reed switches that are triggered using
magnetic force instead of mechanical contact. These switches have 2 tiny ferrous leads - reeds placed close
together in glass tube, as shown on figure 7. When exposed to magnetic field, they snap together and allow
electric current to flow trough. Once magnetic field is removed, reeds retract back to their original position and
circuit is broken once again. To prevent corrosion and displacement of metal components, reeds are sealed in
vacuum inside of a glass tube.

These felt perfect for application, because I could just attach magnet to the side of blind profile instead of
gluing some 3D parts on here. Next big challenge was obtaining them since at this point. I remembered we
have few dysfunctional bike computers lying around - these use reed switches to detect rotation of the wheel
(see figure 8). It can compute rotational speed of wheel from these pulses and finally, by entering front wheel

5

diameter, translational velocity of biker.

Figure 7: Reed switch

Figure 8: Reed switch used by bike computer to count revolutions of wheel [4]

2.5 Cables

To connect switches with Arduino I used nice and tiny copper wires form an unused Ethernet cable. The
problem however is, that these cables come in bundles of 4 twisted pairs, which is too many for my application,
I found it really effective to attach one end of cable to vice and other end to a drill to untwist entire bundle into
separate cables. Then I prepared 2 cable pairs, all of (mostly) white color and twisted them back using same
method (cables can be seen on figures ?? and ??). Because I didn’t want to solder wires onto CNC shield yet,
I used some jumper cables to connect ends of long white wires of switches to the CNC shield.

Motors luckily had their own cables already, which are also long enough too!

3 Execution of plan

3.1 Designing finite state machine

Before I began to mount anything onto the window frame, I programmed Arduino with its control logic. As
mentioned before in section 2, I decided to use finite state machine approach over closed loop control. Idea was,
that blind would automatically open at certain time of the day, for example at 11.00 and stay open till sunset.
Because Arduino UNO can’t access to real time clock, nor did I have time to purchase RTC module, I intended
to connect my Raspberry pi pico W (RPi) and Arduino using serial (UART) communication. Both boards have
designated TX and RX pins that serve this purpose. Let’s formalize description of state machine:

• Device idles in STOP state

• If Arduino receives UP command over serial, it moves to UP state

• similarly, if it receives DOWN command, it goes to DOWN state

• In UP state, system moves blind up until it triggers top limit switch

• in DOWN state, it lowers blind until it triggers bottom limit switch.

• At any time device may receive STOP command, at which it must immediately halt movement and return
to STOP state

On figure 9 shows state diagram for this machine. Variable names in the image, which are also used in the code
later, are a mix of Slovenian and English abbreviations, for example LS Z means Limit switch zgornji and so
on.

6

Figure 9: First version of state machine

3.1.1 Development environment

I could totally just use Arduino IDE to write code in, which works great. Especially version 2 of this program,
which is based on visual studio code editor, that was developed and open sourced by Microsoft. However, I was
interested in finding alternative to that. I found quite popular extension for just mentioned Visual Studio code,
called PlatformIO.

It is an open-source ecosystem for IoT development that supports multiple platforms, frameworks, and
boards. It provides a unified, cross-platform build system and library manager. It also allows user to test and
compile code and write it to board’s memory. Main advantage I saw over Arduino IDE is, that it runs in visual
studio code, which means that I don’t need additional software plus, all my settings, themes and AI copilot
work there [5]. One drawback however is a slightly more advanced setup on the first run, but that was not too
much of an issue. Actual Arduino program is written in c++ language using PlatformIO’s Arduino framework.
Full source code can be found on my GitHub repository [6], but in next chapter you can read main.cpp file.

3.1.2 State machine code V1

1 #include <Arduino.h>

2 #include <AccelStepper.h>

3 #include <math.h>

4

5 #define DRIVER 1 // Use DRIVER = 1 for step/dir drivers

6 #define LS_Z 11 // Z_lim

7 #define LS_S 10 // Y_lim

8 #define ENABLE 8

9

10 AccelStepper M_L(AccelStepper::DRIVER, 2, 5); // STEP = 5, DIR = 2

11 AccelStepper M_D(AccelStepper::DRIVER, 3, 6); // STEP = 6, DIR = 3

12

13 int maxSpeed = 1000; // Steps per second

14 unsigned long millisPrev = 0;

15 unsigned long t = 0;

16 int speed = 0;

17

18 typedef enum

19 {

20 STOP,

21 UP,

22 DOWN

7

23 } State;

24

25 typedef struct

26 {

27 State now = State::STOP;

28 State prev = State::STOP;

29 } StateMachine;

30 StateMachine Window;

31

32 int speedRamp(double milis, double transitionTime, double finalSpeed){

33 // Speed of motor increases slownly by following an S curve

34 return (int)round(finalSpeed * (1 - exp(-pow((milis / (transitionTime / 2)), 2.0))));

35 }

36

37 void setup()

38 {

39 Serial.begin(9600);

40 pinMode(LS_Z, INPUT_PULLUP); // LOW when swithch is activated

41 pinMode(LS_S, INPUT_PULLUP);

42 pinMode(ENABLE, OUTPUT); // HIGH -> steppers can move freely

43

44 M_L.setMaxSpeed(maxSpeed); // Steps per second

45 M_D.setMaxSpeed(maxSpeed);

46 }

47

48 void loop()

49 {

50 if (Window.prev != Window.now)

51 Serial.println(Window.now);

52 Window.prev = Window.now;

53

54 // SERIAL CONTROL

55 if (Serial.available() != 0)

56 {

57 String tmpstate = Serial.readString();

58 tmpstate.toUpperCase();

59 tmpstate.trim();

60

61 if (tmpstate == "UP")

62 {

63 Window.now = State::UP;

64 millisPrev = millis();

65 }

66 else if (tmpstate == "DOWN")

67 {

68 Window.now = State::DOWN;

69 millisPrev = millis();

70 }

71 else if (tmpstate == "STOP")

72 Window.now = State::STOP;

73 }

74

75 // exit movement states

76 if ((Window.now == State::UP && digitalRead(LS_Z) == 0) || (Window.now == State::DOWN && digitalRead(LS_S) ==

0))↪→

77 {

78 Window.now = State::STOP;

79 break;

80 }

81

82 // IO logic

83 switch (Window.now)

84 {

85 case State::STOP:

8

86 M_L.setSpeed(0);

87 M_D.setSpeed(0);

88

89 digitalWrite(ENABLE, HIGH); // RELEASE motors

90 break;

91

92 // This is effectively an OR statement

93 case State::UP:

94 case State::DOWN:

95 t = millis() - millisPrev;

96 speed = speedRamp((double)t, 1000.0, maxSpeed) + 100; // Slowly increase speed using S-curve

97

98 digitalWrite(ENABLE, LOW); // ENABLE motors

99

100 M_L.setSpeed(Window.now == State::UP ? speed : -speed);

101 M_D.setSpeed(Window.now == State::UP ? -speed : speed);

102

103 M_L.runSpeed(); // Run steppers with current speed

104 M_D.runSpeed();

105 break;

106 }

107 }

There are few not-so-clean things in code, for example the way I’m handling states, but hey, it works. You
might have also noticed that I’m using AccelStepper.h that allows using steppers with stepper driver, which is
not supported in classic Stepper.h library. For first tests I was connected to Arduino with USB cable and was
sending serial commands this way. I did not write RPi controller script yet, although I made a simple program
to test whatever my PlatformIO based toolchain works and to test its internet connectivity.

3.2 3D printed parts

First, I modeled motor holder in PTC Creo. The process was relatively straightforward, as dimensions for
NEMA 17 motors are freely available online. I then 3D printed it on my Prusa MKs with black PLA filament,
to match the rest of motor assembly. Motor holder is shown on figure 10. Next was piece that attaches rope to
blind (figure 11). I made it in a way it just snaps into slot of blind aluminum profile, which makes it really easy
to remove, while still making connection strong enough to actually pull blind reliably. I printed this part with
white PETG. Last 3D printed part was pulley that holds rope at top of the window and lets it run smoothly
(figure 12). This piece was a bit trickier, because I wanted it to snap onto handle of the window. To do that
without breaking, I had to print it using PETG, because it is more flexible compared to PLA filament. I also
made part of the print that hughs handle with 100% infill. I was pleasantly surprised by the strength of the
hook! On top part of holder I mounted a metal pulley with ball bearing and secured it with screw and nut.
This way, the friction generated is minimal.

3.3 Mounting actuators and first tests

I mounted motor holder with 2 screws to bottom frame of window, which is all of permanent damage done to
window. All other parts can still be moved around / replaced without any visible marks. First test was a mild
failure - the blind did move, but not much because stepper motors were skipping steps. First thing I noticed
was that rope was rubbing against a part of pulley 3D print. I solved that by reorienting print into a different
position, which eliminated rubbing. But steppers still had hard time moving blind.

The root of the issue was microstepping, which allows the stepper motor shaft to rotate in smaller increments
than a full step, but at the cost of reduced torque. This occurs because power is distributed to the motor coils
in a sinusoidal pattern, unlike in full-step mode where it is shared more evenly between two coils. The step size
is configured by placing jumpers on the M1, M2, and M3 pins on the CNC shield, as shown in Figure 4. Different
jumper combinations result in different step resolutions, as shown in Table 1.

Since all three pins were enabled, motor was operating in 1/16 of a step mode, which delivers smallest
torque. To maximize torque, I unplugged all 3 jumper caps, which set driver to operate in full step mode. After
that, motors were finally able to move blind successfully! This was certainly a big milestone, however I still had
to manually stop blind at its limit positions.

9

Figure 10: Motor holder

Figure 11: Rope attachment

Figure 12: Pulley

Table 1: Microstepping Resolution Truth Table [7]

MS1 MS2 MS3 Microstep Resolution Excitation Mode

0 0 0 Full Step 2 Phase
1 0 0 Half Step 1-2 Phase
0 1 0 Quarter Step W1-2 Phase
1 1 0 Eighth Step 2W1-2 Phase
1 1 1 Sixteenth Step 4W1-2 Phase

3.4 Installing limit switches

I have soldered reed switches to long cables and protected them using heat shrinking tube - that way damaging it
is less likely and it also insulates otherwise exposed electrical contacts. After that, installation of limit switches
wasn’t too troublesome as I just hot-glued them to rail. I placed limit switches on such spots, that motors could
reliably pull the blind without skipping steps.

With that done, when sending UP command, blind moved all the way up and then stopped right there, just
as intended!

3.5 Actually controlling blind movement without PC

At this point I still had three goals to complete:

1. Make the blind controllable without phone

10

Figure 13: Reed switch before it was inserted into
protective tube

Figure 14: Reed sensor mounted on window frame
in lower position, with other cable leading to upper
sensor

2. Pack everything into nice enclosure

3. Make the blind move up and down automatically based on time of the day

Time left to submit report was getting shorter and shorter, so I decided to focus on completing goal number 1
and 2 first. I left goal 3 for later, because it would take quite some time to solder all the pins of RPi and to
write script.

I have decided that control signal could be generated either by detecting claps using sound sensor or by
pressing a simple button. Clapping to open blinds sounded fancier so I began working on that, but unfortunately
sound detection unit I had was defective, so the button was the only viable option left.

For that reason I had to modify my state machine from version 1 (figure 9) to include new logic for controlling
movement. Updated state diagram is shown on figure 15.

• State 0: (initial) System waits for button press, after which it transitions state 1. If top limit switch is
triggered, transition to state 2.

• State 1: Blind moves up until button press or it triggers top limit switch after which it transitions to
state 2

• State 2: System waits for button press, after which it transitions state 3. If bottom limit switch is
triggered, transition to state 0.

• State 3: Blind moves down until button press or it triggers bottom limit switch after which it transitions
to state 0

• Serial commands should be able to transition system from any state into next logical state

Implementation of new logic wasn’t too difficult, but as I found out, It was also crucial to only change state
once after button gets pressed and ignore it for remaining time until it it released - this is what variable SS is
used for. It generates single pulse once button is pushed and then resets to default value. For that purpose, I
used W-15-102C that I originally intended to use as a limit switch (it is also shown in figure 16).

3.5.1 State machine code V2

1 #include <Arduino.h>

2 #include <AccelStepper.h>

3 #include <math.h>

4

5 // Stepeprs

6 #define ENABLE 8

7 int maxSpeed = 70; // S/s

8 int speedRampTime = 3000;

9 AccelStepper M_L(AccelStepper::DRIVER, 2, 5); // STEP = 5, DIR = 2

11

Figure 15: Second version of state machine lets user control blind using a single button

10 AccelStepper M_D(AccelStepper::DRIVER, 3, 6); // STEP = 6, DIR = 3

11

12 // Gumbi

13 #define G1 9 // X_lim

14 #define LS_S 10 // Y_lim

15 #define LS_Z 11 // Z_lim

16

17 // Program variables

18 String serialCommand = "";

19 unsigned long millisPrev = 0;

20 unsigned long t = 0;

21 int speed = 0;

22 bool SwitchState = false;

23 bool preveriousG1state = true;

24

25 typedef enum {

26 STOP_UP,

27 UP,

28 STOP_DOWN,

29 DOWN,

30 NONE

31 } State;

32

33 typedef struct

34 {

35 State now = State::STOP_UP;

36 State prev = State::STOP_UP;

37 State next = State::NONE;

38 } StateMachine;

39

40 StateMachine Window;

41

42 int speedRamp(double milis, double transitionTime, double finalSpeed) {

43 return (int)round(finalSpeed * (1 - exp(-pow((milis / (transitionTime / 2)), 2.0))));

44 }

45

12

46 void setup() {

47 Serial.begin(9600);

48

49 pinMode(LS_Z, INPUT_PULLUP); // LOW when swithch is activated

50 pinMode(LS_S, INPUT_PULLUP);

51 pinMode(G1, INPUT_PULLUP);

52 pinMode(ENABLE, OUTPUT);

53

54 M_L.setMaxSpeed(maxSpeed); // Steps per second

55 M_D.setMaxSpeed(maxSpeed);

56 }

57

58 void loop() {

59 // Debug

60 if (Window.prev != Window.now) {

61 Serial.print(">State:"); //works great with Teleplot VS code extension

62 Serial.println(Window.now);

63 millisPrev = millis();

64 }

65 Window.prev = Window.now;

66

67 bool G1State = digitalRead(G1);

68 SwitchState = (preveriousG1state && !G1State); //detect falling edge

69 preveriousG1state = G1State;

70

71 // GET SERIAL COMMANDS

72 if (Serial.available() != 0) {

73 serialCommand = Serial.readString();

74 serialCommand.toUpperCase();

75 serialCommand.trim();

76 } else

77 serialCommand = "";

78

79 // STATE TRANSITION LOGIC

80 Window.next = Window.now;

81

82 switch (Window.now) {

83 case State::STOP_UP:

84 if (!digitalRead(LS_Z))

85 Window.next = State::STOP_DOWN;

86 else if (SwitchState || serialCommand == "UP")

87 Window.next = State::UP;

88 break;

89

90 case State::STOP_DOWN:

91 if (!digitalRead(LS_S))

92 Window.next = State::STOP_UP;

93 else if (SwitchState || serialCommand == "DOWN")

94 Window.next = State::DOWN;

95 break;

96

97

98 case State::UP:

99 if (SwitchState || !digitalRead(LS_Z) || serialCommand == "STOP")

100 Window.next = State::STOP_DOWN;

101 else if (serialCommand == "DOWN")

102 Window.next = State::DOWN;

103 break;

104

105 case State::DOWN:

106 if (SwitchState || !digitalRead(LS_S) || serialCommand == "STOP")

107 Window.next = State::STOP_UP;

108 else if (serialCommand == "UP")

109 Window.next = State::UP;

13

110 break;

111 }

112

113 Window.now = Window.next; // This has to be done this way so switch() variable doesnt change

114

115 // IO

116 switch (Window.now) {

117 case State::STOP_UP:

118 case State::STOP_DOWN:

119 M_L.setSpeed(0);

120 M_D.setSpeed(0);

121

122 digitalWrite(ENABLE, HIGH); // Release stepper control

123 break;

124

125 case State::UP:

126 case State::DOWN:

127 t = millis() - millisPrev;

128 speed = speedRamp((double)t, speedRampTime, maxSpeed) + 100; //Slowly increase speed using S-curve

129

130 digitalWrite(ENABLE, LOW);

131

132 M_L.setSpeed(Window.now == State::UP ? speed : -speed);

133 M_D.setSpeed(Window.now == State::UP ? -speed : speed);

134

135 M_L.runSpeed();

136 M_D.runSpeed();

137 break;

138 }

139 delay(1);

140 }

I had also cleaned up the code and made state transitioning logic clearer and more organized. I also added
short delay at end of loop because it solved weird issue of system sometimes transitioning 2 states at once
and also, we don’t really need to resample state of system that often. After that, it really worked like it was
supposed to!

3.6 Finishing up

Final thing to do was to wrap up the project and make a nice enclosure for all the electronics to fit in. First,
I did not need a USB cable to debug Arduino anymore. But once unplugged, I realized that CNC shield does
not also supply power to Arduino board with its 12 V power supply. To solve that I soldered 2 wires to bottom
of Arduino’s 12 V power jack and plugged those together with 12 V power supply for CNC shield (see figure
16). Now a single power cord can power both devices simultaneously.

Figure 16: Red and black wires are connected form CNC shield’s power supply to Arduino’s 12 V power jack

Next, I laser cut a wooden box with hinged lid. To avoid spending too much time on designing the box, I
found a great box generator called boxes.py, that generates .svg files for us using predefined templates and

14

given dimensions [8]. Aside from raw python library, they also have online generator and Inkscape plugin. I
have modified generated files to have more air vents, and a hole on the back to pass the cables trough. After
making the box, I realized this could be a bit of fire hazard. To mitigate risk, I poured fine concrete into
bottom of the box to help disperse the heat in case Arduino begins to overheat. I also tried to ignite wood,
from which the box is made, using soldering iron. It did not even start to smoke, even after leaving it on direct
heat exposure for quite some time, so I think I’m safe. Finished enclosure is shown on figure 17. I planned for
the hinged lid of the box to serve as button - you press on the lid and blind starts to move. Realization was
really simple - after embedding all the components into the box and connecting pins, I glued G1 switch to front
end of the box (figure 18) so it’s button keeps the lid open for just a few millimeters. This approach has proven
to work really well!

Figure 17: Finished enclosure Figure 18: Finished enclosure with Arduino and G1

switch installed

To hide cables, I just put back all trinkets and images that were on the shelf before. On figure 19 you can
see, how everything turned out in the end. And with that, the project was finished! Wiring diagram of final
state of project is shown on figure ??.

Figure 19: Finished project

Figure 20: Finished project wiring diagram

15

4 Analysis

I think that the project turned out great as a proof of concept. It successfully moves the blind up and down, with
the added ability to partially open it. However, a few drawbacks arose from the choice of stepper motors, with
the reasoning behind this choice detailed in section 2.1. The most significant issue is the noise they produce.
While stepper vibrations are typically tolerable in applications like CNC machines, the glass in the window
amplifies them considerably. This is closely related to another issue - I had to run the motor at a very low
speed to generate enough torque to move the blind. As a result, a full move of blind takes about one minute of
constant noise.

4.1 Future plans

When I will have time to do so, I’m going to improve the project by:

• Replacing stepper motors with DC motors, which will result in faster and smoother motion with less noise

• Improving position of limit switches, so that the blind will close all the way

• I will replace Arduino with raspberry pi pico w, which will enable time related functionality

4.2 Final thoughts

The project was quite fun and useful. My parents are also satisfied with how it turned out, although they are
a bit concerned by the noise produced by motors. In past few days of testing, we had seen a lot more sunlight
reach into that room, which means that the project really succeeded in what it was intended to do.

References

[1] MotionKing, 17hs2408 stepper motor datasheet, Accessed: 2025-06-18. [Online]. Available: https : / /

datasheet4u.com/pdf-down/1/7/H/17HS2408-MotionKing.pdf.

[2] Kollmorgen Support Network, Pull-in and pull-out torque, Accessed: 2025-06-18. [Online]. Available: https:
//www.kollmorgen.com/en-us/developer-network/pull-and-pull-out-torque.

[3] Keyestudio. “Ks0151 keyestudio cnc shield v2.” Accessed: 2025-06-19. (n.d.), [Online]. Available: https:
//wiki.keyestudio.com/Ks0151_keyestudio_CNC_Shield_V2.

[4] Road Bike Basics. “Landscape image.” Accessed: 2025-06-19. (2020), [Online]. Available: https://roadbikebasics.
com/wp-content/uploads/2020/12/Landscape_small_compressed.jpg.

[5] PlatformIO. “Platformio: The most loved ide solution for microsoft visual studio code.” Accessed: 2025-
06-19. (), [Online]. Available: https://platformio.org.

[6] Cene Trček. “Project’s github repository.” Accessed: 2025-06-19. (), [Online]. Available: https://github.
com/CTJoriginal/Mechatronic_Actuators.

[7] ALLEGRO. “A4988 driver datasheet.” Accessed: 2025-06-19. (), [Online]. Available: https : / / www .

allegromicro.com/-/media/files/datasheets/a4988-datasheet.pdf.

[8] Bamberg Hackerspace. “Universal box – hackerspace bamberg.” Accessed: 2025-06-19. (), [Online]. Avail-
able: https://boxes.hackerspace-bamberg.de/UniversalBox?language=en.

16

https://datasheet4u.com/pdf-down/1/7/H/17HS2408-MotionKing.pdf
https://datasheet4u.com/pdf-down/1/7/H/17HS2408-MotionKing.pdf
https://www.kollmorgen.com/en-us/developer-network/pull-and-pull-out-torque
https://www.kollmorgen.com/en-us/developer-network/pull-and-pull-out-torque
https://wiki.keyestudio.com/Ks0151_keyestudio_CNC_Shield_V2
https://wiki.keyestudio.com/Ks0151_keyestudio_CNC_Shield_V2
https://roadbikebasics.com/wp-content/uploads/2020/12/Landscape_small_compressed.jpg
https://roadbikebasics.com/wp-content/uploads/2020/12/Landscape_small_compressed.jpg
https://platformio.org
https://github.com/CTJoriginal/Mechatronic_Actuators
https://github.com/CTJoriginal/Mechatronic_Actuators
https://www.allegromicro.com/-/media/files/datasheets/a4988-datasheet.pdf
https://www.allegromicro.com/-/media/files/datasheets/a4988-datasheet.pdf
https://boxes.hackerspace-bamberg.de/UniversalBox?language=en

	Introduction
	Problem definition

	The plan and components used
	17HS8401 Stepper motors
	Arduino UNO
	Keyestudio CNC Shield V2
	Limit switches
	Cables

	Execution of plan
	Designing finite state machine
	Development environment
	State machine code V1

	3D printed parts
	Mounting actuators and first tests
	Installing limit switches
	Actually controlling blind movement without PC
	State machine code V2

	Finishing up

	Analysis
	Future plans
	Final thoughts

