UNIVERSITY | Faculty of
OF LJUBL]JANA | Mechanical Engineering

Tine Jereb

Closed-loop stepper motor control with
Eaton XC204 PLC

Idrija, 2025

Contents

1

2

3

4

5

6

7

8

INTRODUCGTION ..ottt ettt ettt ettt et esaeeneesseesseensesneeseensesseenseeneas 3
N7 0015 o010 1) 4SRRI 4
DITIVETS .ttt ettt st s bttt e a e bt et s at e bt et e h e e bt et eat e bt et eaee b enee 4
3.1 IMOLION STUAIO ..ttt sttt ettt ettt sbeenbe e e saeens 5
(070] 11370) | 1<) SO O SOOTRUPRUSRPRO 5
4.1 COAESYS V3 ettt ettt ettt e b et e et e e aa e et e e staeeabeenaaeenbeessaeenraen 5
4.2 MOABUS RTU ...ttt ettt st 6
COMMECTIONS. ...ttt ettt ettt ettt et e s at e et e et e e bt e e st e e bt e sabe e bt e eabeansbesabeesneeenbeeees 6
5.1 Communication LEVEL.........ooouiiiiiiiiii s 6
5.2 DIIVET TEVEL ..ottt et 7
SEtting UP the AIIVELSccuviiiiiiiieiieie ettt ettt re e e e b e e staesbeeseaesaseessseenseas 7
6.1 DIP SWILCRES ...ccuveeiieitieieeieetete ettt ettt ettt et e b e saeeneesaeens 7
6.2 Parameters with motion StUAIO........ccueriiriiriiiiiiecee e 8
6.2.1 Homing Methodcooiiiiiiiiiiiiice et 8
6.2.2 Driver /O terminalcocoeiiiiiiiiiiieie et 8
Programming the PLCcc.cooiiiiiiii et 9
7.1 Configuring PLCc.coouiiiiiiiiite ettt s 9
7.2 Setting up MODBUS commMUNICAtIONcceeveriirieniiniiniienienresitenie e 10
7.2.1 Reading and writing parameterscceeevuveeeiiieeniiieenieeeeiee e eeieeesvee e 12
7.2.2 StOTING PATAMEGLETSvveeeevieeeiieeeiieeeieeeeieeeetee et e eaeeeareeeareesnaeeessseeesnneeennes 14
7.3 Programming function block for motor movementccccceeevieeeiieeniiieenieeeee, 15
7.3.1 USE EXAMPIC...eeeeiieeiiieeiiie ettt ettt ettt e e e et e e st e e staeessseeennseeennseees 18
7.4 Setting up Web VISUAlISAtIONcccuiiiiiiiiiiiieiieee e 19
7.5 State machine Programmingcceecieriieriieniieeniie ettt eee et ebeeseeeesee e 21
CONCIUSION ..ttt ettt ettt ettt et eb et et sbe e bt et e eaeenbeeaesaeens 23

Table of figures

Figure 1: Stepper motor P Series NEMA closed 100Dcceeriiiiiiiiiieiiiniicieeieeeee e 4
Figure 2: CL57RS StEPPET AIIVETeeiuiieiieiieeiieiieeieeeiieeiteseeeteesaeeenreessaesbeesseeesseensnesnsaensaeans 4
Figure 3: Eaton XC204 PLCooiiiiiiiieie ettt ettt ettt et saee e essaesnsaennneens 5
Figure 4: System communication diagrammc.eecuieruieeiiierieeniienieeieeneeeieeseeereesneeseessneens 6
Figure 5: Driver connections dia@ramcccueerieerieeniieeiiienieeieesieereesneereesaeeeseessneeseessneens 7
Figure 6: DIP sSWitCh, addresscc.eeiiuiiiiiiieeiiecccee ettt ree e e 7
Figure 7:HOMING SETUP ..veeevviieiiiiiciiie ettt ettt e te e e taeeeseaeeesaeesasaeeessaeesssaeesssaeessseeennnes 8
FAGUIE 8: I/0) SETHINES ..vvveeeiiieiiie ettt ettt ettt ete e et e et e e steeesbeesssaeeensaeesssaeeensaeesssaeennnes 8
Figure 9: New Project WINAOWcceciieiiuiieiiiieeiieeeieeesieeesteeesaeeeiveeesaeeeeaeesssaeessseeessseeennns 9
Figure 10: Device and programing 1anguage SETUPccceeeeveeerieeeiieeeiieeeiieeeieeeereeeevee e 9
Figure 11: PLC t0 PC CONNECIONccovvieiiiieiiieeciieeciieeeite et et e e e e e aaeeeseeessaeessneeesnseeenes 10
Figure 12: Adding a COM port for Modbus RTU communicationcccceeeeeuveeecveeennenens 11
Figure 13: Adding SIAVESooiuiiiiieiieiie et ettt e 11
Figure 14: S1ave addresscoouiiiiriiiiiiiiieeneeceeet ettt 12
Figure 15: Values and addresses on the motor drive..........c.oeeeeriieiieniieiieniceeeie e, 12
Figure 16: Modbus channel SEtUPcoouiiiiiiiiiiieie e 13
Figure 17: CRANMEISoocviiiiieiiecie ettt ettt et aae et et eenbeessseenseessseenseas 13
Figure 18: Global variable LIStcccueiiiiiiiiiieiiecieeeee et 14
Figure 19: Defining global variablesccccieviiiiiiiiiiiicieceeeeecee e 14
Figure 20: Rewriting Modbus variables to variables used in program............ccccecveevveererennnen. 15
Figure 21: Mapping variables to Channelscccoceeviiriiiiiiiiiciecie e 15
Figure 22: Input/Output Variablescccueivuiiiiieiieeieeiieeie ettt sae e seaeeseeseneennees 16
Figure 23: Selecting right MOtOTcceeiiiiiiieiii ettt seaeennees 16
Figure 24: algorithm for resending the command..............ccccceeriiiiiiniiienieniiceece e, 17
Figure 25: output variables at the end of the movement.............ccccoeevviieeiiieeiiieniecee e, 17
Figure 26: Mapping variables to function block.............cccvieriiiiiiieeiiiieiiececee e 18
Figure 27: Setting variables of function blocK...........cccooiiiiiniiiiiiiniiniicecececee 18
Figure 28: Single variable aCCESScoiiriiiiiiriiiiiieeicecere et 18
Figure 29: Creating VISUAIISAtIONcc.ueruiiriiiiiriieiieeieeit ettt sttt 19
FIgure 30: TOOIDOXeouiiiiiiiiiiiriieeeee ettt sttt 19
Figure 31: E1ement PrOPEItIES.coeiuiriiriieieriieriieieeiterte ettt ettt sttt 20
Figure 32: VISUALIZAtIONcueiiiiiiiiiiiiitciec ettt 20
FIgure 33: HOMINEoiiiiiiiiiiiiteeeet ettt ettt et st sbe e s 21
Figure 34: state machine COC.......c..couiriiniiiiiiniiiiieee e 22

1 INTRODUCTION

The project is based on controlling the drives, PLC and programing the logic of a machine
used for automatically storing and supplying tools to production lines. Due to the policies of
the company that is financing the project I can’t include any details or photos of the complete
machine. So, in this paper I will concentrate on the theoretical and practical aspects of setting
up stepper motor drives, configuring the communication protocol between the PLC and
drivers and executing the control code used on the machine.

2 Stepper motors

The system uses StepperOnline P Series NEMA closed-loop stepper motors with integrated
1000 PPR (4000 CPR) incremental encoders. These motors were chosen in different sizes
(Nema standard) based on torque requirements on different axis of the machine. Their
affordable price, simple setup, and reliable closed-loop performance made them an alternative
to servo motors, offering good accuracy and automatic position correction without the
complexity or cost of full servo systems.

Figure 1: Stepper motor P Series NEMA closed loop

3 Drivers

The selected drivers were CL57RS closed-loop stepper drivers, which are compatible with
NEMA 23 motors and support Modbus RTU (RS-485) communication. They provide smooth
and precise motor control, automatic error correction based on encoder feedback, 7 different
homing methods and built-in protection features such as over-voltage, over-current, and
position deviation alarms. The drivers support a wide input voltage range (24—-50V DC) and
allow microstepping settings up to 256 subdivisions, making them suitable for a variety of
motion control tasks while remaining cost-effective and easy to integrate with a PLC.

Figure 2: CL57RS stepper driver

3.1 Motion studio

Motion studio is the software that is used for configuring and testing the set parameters of the
driver. It was used to set the running direction, jog speed, inputs and outputs of the driver and
homing methods.

4 Controller

The controller used was the Eaton XC-204, a compact and modular PLC designed for
automation tasks. It features a 400 MHz RISC processor and supports programming
according to the IEC 61131-3 standard via CODESYS V3. The base unit comes with
integrated communication interfaces, including Ethernet, RS-232, and RS-485, making it
good for Modbus RTU or TCP-based control systems.

The PLC includes built-in digital I/O and supports modular expansion, allowing the addition
of various I/0O and communication modules to meet specific application requirements. It also
offers real-time processing and a web-based diagnostic interface. Thanks to its flexibility and
industrial-grade reliability, the XC-204 is well-suited for controlling motion systems such as

stepper motors in automation environments.

Figure 3: Eaton XC204 PLC

4.1 Codesys V3

For programming I used Codesys V3 software. The PLC supports Ladder and Structured text
programming, but for this task I used only ST language because the program was quite big,
and it was more manageable that way. It also makes it easier to implement Modbus
communication. Software and PLC also support web visualisation that is easily implemented
and used for controlling the machine. For debugging PLC also has online mode so you can se
the variable values in real time.

4.2 Modbus RTU

In this project, communication with multiple stepper motor drivers is achieved using the
Modbus RTU protocol over a shared serial COM port. Each driver is assigned a unique
Modbus slave ID. Control and monitoring are performed by reading from and writing to
specific register offsets corresponding to driver functions — such as position, speed,
acceleration, or status flags. The PLC (as Modbus master) sends function code commands
(e.g., 03 for reading, 06 or 16 for writing) to these offsets, allowing control of motion
parameters for each motor individually over a single RS-485 bus. Codesys uses a library that
allows for simple implementation of these commands without the need to manually compose
messages inside the code.

5 Connections

5.1 Communication level

Diagram in figure Figure 4 shows the communication level configuration of the system. At
the top level sits the PC that is used to send commands from web visualisation HMI over
ethernet to the PLC. Bellow the PLC is a Modbus master slave configuratiom between the
CL57RS drivers and PLC.

Figure 4: System communication diagram

5.2 Driver level

Figure 4 displays the connections of all the used components to the driver.

RS485 IN RS485 OUT

- I LIMIT SWITCH CABLE
Pt] E

ENCODER CABLE |

MOTOR CABLE

POWER CABLE

Figure 5: Driver connections diagram

6 Setting up the drivers
6.1 DIP Switches

First five DIP switches are used for setting the slave address of each drive according to the
table displayed on the front panel of the driver. This will be important later when configuring
Modbus RTU between PLC and drivers

RS485 Address Setting Table

Figure 6: DIP switch, address

DIP switch 6 — 7 are used to set the baud rate of communication and the last switch 8 is
terminal resistance that needs to be turned on on the last driver in the communication chain.

6.2 Parameters with motion studio

6.2.1 Homing method

Steppers use incremental encoders so after powering up the machine referencing of the
motors is required. Referencing is done using the limit switch homing method. With firstly
high-speed approach to the limit switch (used to cut the time used for referencing if the axis
is far away from limit switch) and then axis moves back few millimetres and approaches the
limit switch again with lower speed for better accuracy of homing. The limit switch is

connected directly to the driver input terminal.

Control P | Path P | Manual | P; List]
Control Config Homing Config
CTRGIPB.0) Horring Directior(Pr8.10) {PB10) (PB13FB14)
Homing =
Homing after power on Moves to specified location after
O Rising edge tigger O Drectonthiegaive) L Homing(Puise)
Absolute data , Homing -
: R Direction(Positive) (L) Z-signal Homing
R (F8.15)
; ln;;;:n o eepe Trigger (Pr8.10) 0
Homing Method High Speed(rpm)
= ebariasal 0 Limit Switch Homing P8.16)
[_J Software Limit Posit | 1: Homing Switch Homing
;‘OW) 2 Single tum Z-signal Homin| Low Speed(ipm) 0
Software Positve Limi Posion{Pulse] o Jors Howng (PiB18)
» q Acceleration 5 Reserved
Software Negative Limt Posttion(Pluse) U time{ms/Krpm) 6 Reserved Wmmmm) 2
7. Reserved
ewmm_—‘"‘l—“’ rgedate

Figure 7:Homing setup

6.2.2 Driver I/O terminal

Inside the I/O settings I set up to which pin the limit switch is connected.

1/0 Setting

Input | Output |

Pin Function Polarity Status

- Axis!
[PA4.02 SI [8]Servo ON(SRV-ON) 1:Normally Closed 1:ON
R PA4.03 512 [0]Input Invalid(-) 0:Normally Open 0:OFF
[PA4.04SI3 [0]input Invalid(-) 0:Normally Open 0:OFF
A PA4.05 514 [0]Input Invalid(-) 0:Normally Open 0:OFF
[PA4.06 SI5 [0]input Invalid(-) 0:Normally Open 0:OFF
B PA4.07 SI6 [0)Input Invalid(-) 0:Normally Open 0:OFF
A PA4.08 SI7 [0]Input Invalid(-) 0:Normally Open 0:OFF

Figure 8: /0 settings

7 Programming the PL.C

7.1 Configuring PLC

Firstly, I opened the codesys V3 software and created and by clicking on ‘New Project
created a new project with standard template as shown in Figure 9.

b

|=] New Project x
Categories Templates
;{1 Libraries e -
w-{_J Projects . I 5 =

Empty project HMI project Standard Standard
project project w...

A project containing one device, one application, and an empty implementation for PLC_PRG

Name example

Location |F:'-PLLI'I"-.|:|r|:|gram |

Figure 9: New project window

After that I selected the Eaton XC204 device and selected the programming language to be
Structured Text (ST) as shown in Error! Reference source not found..

Figure 10: Device and programing language setup

Finally, I set up the Ethernet route between the PC and PLC. I connected the PLC to a router
so it can be reached from anywhere inside the local network using the correct IP address as
shown in Figure 11.

o .
Gateway .
[ateway-1]] 1u.1.25.204 active v|
IP-Address: Device Mame:
localhast 151300000988
Port: Device Address:
1217 0301.1000.2DDC.0A01.1ACC

DeviceIPAddress:
10.1.26.204

Target ID:
1024 0204

Target Type:
4096

Target Vendor:
Eaton Automation

TargetVersion:
3.5.19.30

Figure 11: PLC to PC connection

7.2 Setting up MODBUS communication

As can be seen in Figure 4 the Modbus RTU communication is set so the PLC is the master,
and the six motor drivers used are slaves.

Codesys features a library that can be used to simply add slaves to the network and set up the
parameters that will be sent and received over the RS485 cable to the selected drives and
back to PLC. To set up the COM port of the PLC used for Modbus communication I right
clicked on ‘Device (XC204)’ in the tree structure window and then clicked on ‘Add device’
inside the add device window I selected the Modbus COM option.

10

.
Devices
=) et - [Add Device X
- mé?‘;ﬁcm) Name Modhus_COM
= ogic
= €} Anplication £=imn

il Library Manager
PLC_PRG (PRG)
=8 Task

© Append device

O Update device

String for a full text search Vendor

<Al vendors >

= & MaiTask

Name Vendor

Version Description
&) pLc_prG

+ [Miscellaneous
= [ij Fieldbuses
-con Canbus
ot EtherCAT
EP Ethernet Adapter
< EtheretP
e Mocbus
= Kett Modkbus Serial Port

(i [Modbus COM__] 35 - Smart Softnare Solutions GrbH ~ 4,1.0.0

A serial COM Part on a Windows PC.

18 Group by category (] Display all versions (forexperts only) (] Display outdated versions

‘Hame:Modbus COM
Vendor: 35 -Smart Software Solutions GmibH
Categories: Modbus Serial Port

Version: 4.1.0.0
Order Number: -
Description: A serial COM Port on a Windows PC

=

Append selected device as last child of
Device

@ (You can select another target node inthe navigator while this window is open.)

dloze
Figure 12: Adding a COM port for Modbus RTU communication

After that following the same procedure as above, I added a master and slaves for all six
motors used. Process can be seen in Figure 13.

= Lintitled' 1
= Device (XC204)
= [0 pLcLoge
= € Application
) Liorary Manager Action
PLC_PRG (RG) © Append device
= @ Task configuration

© Update device

= & manmask String for a ful text search Vendor <Al vendors> =
8] pLc PRG Name. Vendor Version Description
= [Modbus_COM (Modbus COM) = [0 Fieldbuses
= Modbus_Master_COM_Port (Modbus Master, COM Port) = ot Modbus

[Modbus_Slave_COM_Part (Modbus Slave, COM Part) = uu Modbus Serial Slave
(@ Modbus Slave, COMPort 35 - Smart Software Solutons GmbH~~ 4.1.0.0 A generic device that works as a Modbus Slave on a serial bus.

@ Group by category (] Display all versions (for experts only) (] Display outdated versions.

[Mame:wodous Siave, COMPort
r: 35 - Smart Software Sokutions GmbH
Categories: Modbus Serial Slave
Version: 4.1.0.0
Order umber: -
Description: A generic device that works 26 3 Modbus Siave on 2 serial bus,

%

Append selected device as last child of
Hodbus_Master_COM_Port

@ (You can select another target node inthe navigator while this windaw is open.)

o
Figure 13: Adding slaves

Here it is also important to correctly set the address of the slaves, so it matches the addresses
set on the driver using switches shown in section 6.1. The slave address is set inside the
general menu of the selected slave device, Figure 14: Slave address.

11

[Modbus_COM (] Medbus_Slave_COM_Port X

General Modbus RTU/ASCII

Modbus Slave Channel Slave address [1..247] 1

Responsze timeout {ms) 1000
Modbus Slave Init

ModbusGenericSerialSlave IEC
Objects

Status

Information

Figure 14: Slave address

7.2.1 Reading and writing parameters

The values that need to be read are set inside the Modbus Slave Channel menu. Firstly, I
defined which values need to be read and sent and at what address in the CL57RS drive
memory are these values stored. I got this information from the CL57RS user manual.
Section of the parameters and addresses from the CL57RS user manual can be seen in Figure
15.

5.4.1 PR Parameters

Usually it is recommended using the PTP window of the STEPPERONLINE tuning software to configure the PR
path parameters, but it can also use the following objects:

Par. #in g Add Definition Description

The corresponding functions can be selected for different
bit
Bit0-3: Operation mode

=0---- no action

=1---—- position mode

=2---— velocity mode

=3---— homing mode;

Bit4: INS,
=0---- No interrupt
=1--— interrupt(all the current ones are 1.);
Pr9.00 0x6200 PR path 0 Bit5: OVLP.

=0--— Non overlapping
=1-—— Overlapping

Bit6:
=0----absolute position
=1——relative position
Bit8-13: Jump to the corresponding PR path 0-15;
bit14: JUMP,
=0--- No jump
=1-—— jump
Pra.01 0x6201 Position H High 16 bit,
Pr9.02 0x6202 Position L Low 16 bit
Pr9.03 0x6203 velocity Unit: rpm
Pr9.04 0x6204 Acc Unit: ms/1000rpm
Pr9.05 0x6205 Dec Unit: ms/1000rpm
Pr9.06 0x6206 Pause time Pause time after the command is stopped
Pra.07 0x6207 Special parameter PR Path 0 maps directly to Pr8.02, Others are reserved
Pr9.08 0x6208 PR path 1 o
Pr9.09 0x6209 Position -
Pr9.10 0x620A Position -
Pra.11 0x6208 velocity -
Pra.12 0x620C Acc -
Pra.13 0x620D Dec -
Pro.14 0x620E Pause time -
Prg.15 0x620F Special parameter —
Pra.186 0x6210 PR path 2 -
Pr9.17 0x6211 Position -
Prg.18 0x6212 Position —
Prg.19 0x6213 velocity —
Pr9.20 0x6214 Acc -
Pr9.21 0x6215 Dec -
Prg.22 0x6216 Pause time —

Figure 15: Values and addresses on the motor drive

After defining the values and addresses I set them up inside the program using the ‘add
channel’ function.

12

Modbus Channel

Channel

MName
Accesstype
Trigger
Comment
READ Reqgister
Offset

Length

Error handling

WRITE Reqgister
Offzet

Length

Channel 59

Read Holding Registers (Function Code 3)

Crydic

S

Cycle time {ms)

100

00000

1

Keep last value

0x0000

1

Figure 16: Modbus channel setup

Cancel

Inside the Modbus channel set for each parameter, I wanted to read or write I configured a
trigger which can be:

e Cylic —reads or writes in set time intervals (used for reading statuses and position of
the motor)

e Rising edge — reads or writes when a rising edge is detected on later set trigger value

(used for sending position, jog, enable/disable commands)

Then I set the offset value of the parameter according to the addresses found in the user

manual. One channel allows you to read multiple parameters at once by setting the length
value this reads or writes form offset value forward as many as specified with length and
stores them in an array.

Figure 17 shows the setup of the channels for a single slave. I repeated this process for all the

slaves.

General

Modbus Slave Channel

Modbus Slave Init

ModbusGenericSerialSlave /0
Mapping

ModbusGenericSerialSlave IEC
Objects

Status

Information

Figure 17: Channels

Name
0 Channel 0
1 Channel 1
2 Channel 2
3 Channel 3
4 Channel 4
5 Channel 8
6 Channel 9

Access Type

Read Holding Registers (Function Code 03)
Write Single Register (Function Code 0)
Read Holding Registers (Function Code 03)
Write Multiple Registers {Function Code 15)
Read Holding Registers (Function Code 03)
Write Single Register (Function Code 05)
Write Single Register (Function Code 05)

Trigger

Cydic, t£100ms
Cydic, t£3000ms
Cydic, t£300ms
Rising edge
Cydic, t£5000ms
Rising edge
Rising edge

13

READ Offset
16#1003

16#602C

162203

Length
1

2

1

Error Handling
Set to zero

Set to zero

Set to zero

WRITE Offset

16=000F

1626200

16#1801
16#01E1

Length Comment

7.2.2 Storing parameters

After that the values from the channel need to be mapped to variables to be used later in the
control program. I did this using the ModbusGenericSerialSlave I/O Mapping menu. But
before that I needed to create global variables inside the program. This is done by right
clicking the ‘Application’ object inside the tree structure and under ‘Add object ’selecting
‘Global variable list’.

=4 untitedt -
= (@ Devics (c204) General
= Bl PLC Logic
@_ﬂ - o Modbus Slave Channe
N d & Cut
Modbus Slave Init
E Copy
=& Paste ModbusGenericSerialt

Objects

K Delete
Status

& m Modb Refactoring 3

Properties.. Information

E Add Object 4 Alarm Configuration...

) Add Folder... b Application...

(7" Edit Object P s Group..

Edit Object With... Cam table...
% Login CNC program...
; CNC settings...
Delete application from device

Communication Manager..
Data Sources Manager..
DUT...

External File..

Global Variable List...

Global Variable List (tasklocal)...

Image Pocl...

Interface...

Network Variable List (Receiver)...
Network Variable List (Sender)...
Persistent Variables...

POU...

POU for Implicit Checks..
Recipe Manager..

Redundancy Configuration...
Symbel Configuration...

Text List...

Trace..

Trend Recording Manager..
Unit Conversion...

Visualization...

BENRADSSRDEARR L DBEELAeRERIOB

Visualization Manager...

Figure 18: Global variable list

This creates a space where all global variables for storing Modbus values are defined. In
Figure 19 is an example for how I defined the variables.

wModBusRead MotorZ Status: WORD;
waModBusRead MotorZ ActualPosition :ARRAY[0..1] OF WORD;
wModBusWrite MotorZ Enable: WORD;

waModBusWrite MotorZ MotionParameters :ARRAY [(..7]0OF WORD;
xModBusWrite MotorZ Triger:BOOL;

wModBusEead MotorZ Error: WORD;
wModBusWrite_MotorZ_ResetCurrentﬁlarm:WORD;
wModBusWrite_MotorZ_JogCommand:WORD;
xModBusWrite MotorZ JogTrigger :BOOL;
wModBusWrite_MotorZ_Jog?elocity:HORD;

Figure 19: Defining global variables

14

As seen in Figure 15 position needs to be sent and received in high and low byte format to
two registers which allows the sending of bigger numbers than only 16bit. This is
implementation can be also seen in third and fourth line of Figure 20.

//MotionParameters and Motion

waMotorz MotionParameters[0]
waMotorz MotionParameters[l]
waMotorz MotionParameters[2]
waMotorZz MotionParameters[3]
waMotorZz MotionParameters[4]
waMotorZ MotionParameters[5]
waMotorZ_MotionParameters[6]
waMotorZ MotionParameters[7]

uiMotorz_OperationMode;
UDINT TO_WORD (udiMotorz NewPosition/
UDINT TO WORD (udiMotorz NewPosition-—
uiMotorZ Velocity:
uiMotorZ_Acc;
uiMotorZ_Dec;

uiMotorz Mode;

// Prepis v iBus

wModBusWrite_MotorZ_Enable := BOOL_TO WORD (xWEB_MotorZ_Fnabls) OR BOOL_TO_WORD (xMotorZ_Enabls)
waModBusWrite MotorZ MotionParameters := waMotorZ MotionParameters;

xModBusWrite MotorZ Triger := xMotorZ_StartTriger OR xMotorZ_HomingTriger OR xMotorZ_CyclicStartTriger

wModBusWrite MotorZ_ JogVelocity:= wAllMotors_JogVelocity;
xModBusWrite MotorZ JogTrigger:= xMotorZ_JogTrigger;
wModBusWrite MotorZ_JogCommand:= wMotorZ_JogCommand;

Figure 20: Rewriting Modbus variables to variables used in program

Finally, the Modbus channels can be mapped to these variables inside the previously
mentioned ModbusGenericSerialSlave I/O Mapping menu. As shown in Figure 21. Channels
that I previously defined rising edge trigger also have a trigger variable.

Variable Mapping Channel Address Type Default Value Unit Description

+. 4 Application.wModBusRead_Motorl_Status " Channel 0 SLIaeR ARRAY [0..0] OF WORD Read Holding Registers

- Application. wModBusWrite_MotorL_Enable " Channel 1 Lo ARRAY [0..0] OF WORD Write Single Register

+. 4 Application.waModBusRead_Motorl_ActualPosition " Channel 2 Beied ARRAY [0..1] OF WORD Read Holding Registers
i Application. xModBus\Write_MotorL_Triger " Channel 1 SO BIT Trigger variable

+- " Application.waModBus\Write_Motorl_MotionParameters " Channel 3 BSOS ARRAY [0..7] OF WORD Write Multiple Registers

+- 4% application. wModBusRead_Matorl_Error " Channel 4 SIS ARRAY [0..0] OF WORD Read Holding Registers
" Application, xModBusWrite_MotorL_JogTrigger "% Channel & BLO¥I34.0 BIT Trigger variable

E Application. wModBus\Write_Motorl _JogCommand " Channel 8 SEH3E ARRAY [0..0] OF WORD Write Single Register
"# Application, xWEB_AlMotors_JogVelocityTrigger "% Channel 9 S350 BIT Trigger variable

+- Ty Application. wModBus\Write_Motorl_JogVelodty " Channel 2 SLoAAD ARRAY [0..0] OF WORD Write Single Register

Figure 21: Mapping variables to channels

7.3 Programming function block for motor movement

For simpler and more readable implementation of the state machine I decided to make a
function block. Function block takes next input arguments:

e motorName — Here I specify which motor I want to move (Example input: “MotorX”)

e position — new target absolute position of the motor in encoder increments (Example
input: 10000)

e acc — acceleration of the motor during movement (Example input: 100)

e dec — declaration of the motor during movement (Example input: 100)

e velocity — velocity in RPM during movement ((Example input: 50)

Function block returns next values as outputs:

e Done — Value is True when the movement of the motor finishes without an error.
e Inprogress — Value is True when the motor is moving towards a new position.

e Inposition - Value is True when the motor reaches targeted position.

e Error — True when an error occurs.

Inside the function block there is also an algorithm that detect is the motor hasn’t started to
move after PLC send the command, so that in this case the function block tries to send the

15

command again after 200ms. If the motor still doesn’t move after sending the command ten
times, there is probably something wrong with the hardware and function block returns an
error.

Below I will include some of the most important parts of the function block code.

Figure 22 shows previously mentioned inputs and outputs of the block.
' FUNCTION BLOCK MotorControl

VAR_INPUT
motorName: STRING(7) ;
velocity: UINT;
acc: UINT;
dec: UINT;
position: UDINT;
request: BOOL;

END VAR

VAR OUTPUT
InPosition : BOOL;
InProgress : BOOL;
Done : BOOL;
Error : BOOL;

END VAR

Figure 22: Input/Output variables

Figure 23 shows a part of the code that select variables of which motor need to be written to
based on the motorName input.

IF motorName ='Motori' THEN
motor:=1;

ELSIF motorName ='MotoryY' THEN
motor:=2;

ELSIF motorName ='MotorZ' THEN
motor:=3;

ELSIF motorName ='MotorL' THEN
motor:=4;

ELSIF motorName ='MotorR' THEN
motor:=5;

ELSIF motorName ='MotorP' THEN
motor:=&;

END_IF

END_IF

CASE motor OF

1: //x
uiMotor® Mode := Mode;
uiMotorx Velocity := velocity;
udiMotorX_ NewPosition := position;
uiMotorX_Acc := acc;
uiMotorx_Dec := dec;
MotorX_ Triger MotorContreol := trigger:;
actual position := udiMotorX ActualPosition;
motorRunning := xMotorX Running;
pathCompleted := xMotorX PathCompleted;
xBusy := Modbus_Slave COM Port MotorX.xBusy;
2: [y
uiMotoryY Mode := Mode;
uiMotoryY Velocity := velocity;
udiMotorY NewPosition := position;

Figure 23: Selecting right motor

Figure 24 is the algorithm that runs after the command to move has been sent to the motor. If
the motor is running the program advances to the case 150. Second option is if the motor
reaches targeted position very fast (before receiving back the running status) or if it already is

16

in that position code also advances to case 150. Third option happens if neither of the about
happens inside 200ms the timer runs out and code enters if statements that send it back to
case 50 where the command is sent again.

100:=//
trigger := FALSE;

IF motorRunning THEN

trigger := FALSE;
koraki_movement := 150;
ELSIF WithinTolerance (actual position, position) THEN
trigger := FALSE;
koraki movement := 150;

ELSIF timerTrigger.Q AND NOT xzBusy AND xInputZ? THEN

IF retryCount <= 10 THEN
trigger:=FALSE;
timerZakasnitevObNapaki (IN:=TRUE , PT:= , Q=> , ET=> };
IF timerzZakasnitevObNapaki.Q THEN

retryCount := retryCount + 1;
koraki movement := 50;
napake := napake+l;
timerZakasnitevObNapaki (IN:=FALSE , PT:= , Q=> , ET=> };
timerTrigger (IN:=FALSE , PT:= , Q=> , ET=> };
END_IF
ELSE
koraki movement := 9%%; //error
trigger:=FALSE;
EN'D_I F
EN'D_I F

Figure 24: algorithm for resending the command

Figure 25: Shows output variables at the end of the movement.

200://konec
InProgress := FALSE;
Done := TRUE;
koraki movement := 0;
timerTrigger (IN:=FALSE , PT:= , O=>» , ET=>);
timerczlobal (IN:=FALSE , PT:= , Q=> , ET=>);
retryCount := 0;
999: //error
InProgress = FALEE;
Error := TRUE;
timerTrigger (IN:=FALSE , PT:= , Q=> , ET=>);
timerczlobal (IN:=FALSE , PT:= , Q=> , ET=>);
Ehﬂq_FHkSE

Figure 25: output variables at the end of the movement

17

7.3.1 Use example

Firstly, I created a separated FB for each motor so program can run multiple function blocks
at the same time, one for each motor.

MotorP RUN : MotorControl;
MotorX RUN : MotorControl;
MotorY RUN : MotorControl;
MotorZ RUN : MotorControl;
MotorL RUN : MotorControl;
MotorR RUN : MotorControl;

Figure 26: Mapping variables to function block

Here is an example of the input for motor to move to a specific position with given
parameters Figure 27.

MotorZ RUN |
motorName:="'Motorz '
velocity:=100 ,

acc:= r

r

dec:=5
position:=1000 ,
request :=TREUE ,
InPosition=> ,
InProgress=>> ,
Done=> ,

Error=> };

Figure 27: Setting variables of function block

Program also allows accessing single inputs and outputs. So, I don’t need to input all the
parameters each time I can set the velocity, acc, dec and motorName parameters at the start of
the program and execute movement only by changing the position and setting the trigger to
TRUE during later movements as shown in Figure 28.

€00://odmakne ¥

motor¥ run.position := udiMovePosY;
Motor¥ RUN.redquest:=TEUE;

Motor¥Y RUN();

IF MotorY RUN.Done THEN

Motor¥ RUN.request = FALSE;
UiKorakiAvtoPospravi :=700;
END IF

Figure 28: single variable access

18

7.4 Setting up web visualisation

Eaton XC-204 has a built-in web visualization feature that allows users to monitor and
control the automation system through a standard web browser. It works similarly to an HMI
(Human-Machine Interface), displaying real-time data, buttons, status indicators, and process
graphics. Instead of using a physical HMI panel, the interface is hosted on the PLC and
accessed remotely via IP address using a web browser.

Web visualization is set up inside the object tree by clicking on ‘Add object’ and selecting
“‘Visualization’

= 0 Device (re204) 2 VAR GLOBAL
= B0 pLC Logic 3 END_VAR
@ e & cut
) Library Manag B Copy
~[E] PLcPRG (PRY I Paste
= (B Task Confiour| % Delete
=g MainTask|
B nc Refactoring »
[Modbus_CcoM (Modbu: Properties..
1] Add Object + Alarm Cc
) Add Folder... Application...
[Edit Object Axis Group...
Edit Object With Cam table...
€8 Login CNC program..
CNC settings..
Delete application from device .
Dota Sources Ma
DUT...
Extenal File...

Global Variable List...

Global Variable List (tasklocal)...

Image Pool..

Interface.

Network Variable List (Receiver)..
Network Variable List (Sender)...

Persistent Variables...

POU..

POU for Implicit Checks.

Recipe
Redundancy Configuration..

Symbol Configuration...
Text List...

Trace..

Trend Recording Manzger.

sion.
Visualization...

ERiigAaDlePERE4ARR Ll DBEBEL Ao OE

Visualization Manager...

Figure 29: Creating visualisation

Elements of the visualisation are added from the toolbox Figure 30.

-

@&
Alarm Manager Measurement Controls
Lamps/Switches/Bitmaps Special Controls Date/Time Controls

E Combo Box, B - u
Label Combo Bax, Array Tabs Button Group Box
Integer
. F==A
. m
im W = -v o
|
Table Text Field Scroll Bar Slider Spin Box Invisible Input
Progress Bar Check Box Radio Buttons

Figure 30: Toolbox

19

After adding the elements such as buttons, textboxes etc. I set the variables which they are
mapped to in the properties box of each element.

7 Filter = | ¥% Sort by - %lSortorder = [Advanced

Property Value
Element name | GenBleminst_73
Type of element Button

+ Position

+ Colors

IUse gradient color

Gradient setting] linear, Black, White
Button height 0

- Bitmap info
Texts

- Text properties

- Absolute movement

+H o+

- Relative movement
Text variables

Text variable
Tooltip variable
+ Colorvariables
+ Statewariables
= Input configuration

= Toaggle

Variable XWEB_MotorZ_Enable
= Tap

Variable

Tap FALSE
Access rights Mot set. Full rights.

Figure 31: Element properties

Figure 32 shows one of the pages of the web visualisation.

‘TCP VKLOP AVTOMATSKO DELOVANJE
5 OMARA ZAVESE
| 9%i INDEX NUM | %i -
| GRID X: %i | GRID Z: %i
| %i | %i
ZAGON PO KORAKIH
]7 Premik XZ I TOGGLE TESTRUN |
“ Premik P na pobiranje IW

Premik Y na pobiranje Dostava case: %i

Nalacanic pracela B Spravilo case: %i

| woer |

‘Odmik Y na sredino

Figure 32: Visualization

20

7.5 State machine programming

The automatic movement of the machine is achieved by using a state machine based code. On
power on the machine all motors need to be referenced this is achieved by homing all the
motors, this is done by setting the mode and operation mode of the motors to homing and
triggering it. Part of the power on code is shown below.

500: sForakivklop:= 'Homing Y';
uiMotor¥ Mode := 33;
uiMotor¥ CperationMode = 3;
¥MotorY HomingTriger := TEUE;
IF xMotorY Bunning THEN

®¥Motor¥ HomingTriger := FALSE;

uiKorakivklopNaprave := 510;
END IF

uiKorakiVklopNaprave := £00;
END_IF
€00: sForakiVklop:= 'Homing X";
uiMotorX Mode := 3Z;
uiMotorX OperationMode := 3;
¥MotorX HomingTriger := TREUE;
IF xMotorX Bunning THEN
¥MotorX HomingTriger := FI

uiKorakiVklopNaprave := £10;
END IF

o

IF xMotorX PathCompleted = TRUE AND xMotorX CommandCompleted AND xMotorX HomingCompleted THEN

uiKorakiVklopNaprave := 700;
END IF

Figure 33: Homing

21

After machine is powered on and all motors are homed the automatic sequence can begin.
First few lines of the code of automatic sequence are displayed in Figure 34

50://nastavi motorje
finishedFBSEQ:
MotorX RUN (motorName:='MotorX', velocity: J , acc:= r
MotorY RUN(motorName:='Motor¥', wvelocity:= ; acc:=4 r

MotorZ RUN (motorName:='Motorz', wvelocity:
Motorl RUN (motorName:='MotorL', velocity:
MotorR_RUN (motorName:='MotorR', velocity:
MotorP RUN (motorName:='MotorP', velocity

= Motorz_fast

//TCP—————
bStatusOmare := 3;
UiKorakiAvtoDostava :=

B0: //prepis poziciji
StepCountXSave:= udiStepCountX;
StepCountzsSave:= udisStepCountiz;
uiDrawerIndexSave := uiDrawerIndex;

UiKorakiAvtoDostava := 1

100://preveri ¥, &e je odmaknjen
motorY_run.position := udiMovePosY;
Motor¥Y RUN.request:=TRUE;
MotorY RUN();

IF MotorY¥ RUN.Done THEN
Motor¥ RUN.request
UiKorakiAvtoDostava

END_IF

[3]

10://premakne X na loka
UiKorakiAvtoDostava
MotorZ RUN.request:=TEL
Motor¥X RUN.reguest:=TRUE;

210://premakne Z na lokacijo
MotorZ run.position := StepCountZSave;
MotorX run.position := StepCountXsSave;

MotorZ RUMN();
MotorX RUN():

IF MotorX RUN.Done THEN
MotorX RUN.reguest := FALSE;
END_IF

IF MotorZ RUN.Done THEN
MotorZ RUN.request := FALSE;
END IF

IF Motor¥ RUN.Done AND MotorZ RUN.Done THEN
UiRorakiAvtoDostava := ;
END IF

Figure 34: state machine code

22

8 Conclusion

In this project, I successfully implemented closed-loop stepper motor control using the Eaton
XC-204 PLC and CL57RS drivers, communicating over Modbus RTU. The system allows for
precise and reliable motion control, with automatic correction of positioning errors via
encoder feedback. Using CODESYS V3 and structured text programming, I developed a
modular and maintainable control program, including a state machine and function blocks for
scalable control. The built-in web visualization feature on the XC-204 provided an effective
alternative to a traditional HMI, allowing remote control and monitoring through a standard
web browser. The experience gained through configuring drivers, programming Modbus
communication, and building the control logic has deepened my understanding of industrial
motion control systems and PLC-based automation.

23

References

[1] STEPPERONLINE, CL57RS Closed Loop Stepper Driver User Manual. [Online].
Available: https://www.omc-stepperonline.com/modbus-rs485-closed-loop-stepper-motor-
driver-0-5-7-0a-24-48vdc-cl57rs

[2] CODESYS GmbH, CODESYS Examples Documentation Portal. [Online]. Available:
https://content.helpme-codesys.com/en/CODESYS%20Examples/_ex_start page.html

[3] EATON, Modular PLCs XControl Manual. [Online]. Available:
https://www.eaton.com/us/en-us/catalog/machinery-controls/xc-modular-programmable-
logic-controllers--plcs-.html#tab-2

24

https://www.omc-stepperonline.com/modbus-rs485-closed-loop-stepper-motor-driver-0-5-7-0a-24-48vdc-cl57rs
https://www.omc-stepperonline.com/modbus-rs485-closed-loop-stepper-motor-driver-0-5-7-0a-24-48vdc-cl57rs
https://content.helpme-codesys.com/en/CODESYS%20Examples/_ex_start_page.html
https://www.eaton.com/us/en-us/catalog/machinery-controls/xc-modular-programmable-logic-controllers--plcs-.html#tab-2
https://www.eaton.com/us/en-us/catalog/machinery-controls/xc-modular-programmable-logic-controllers--plcs-.html#tab-2

