The model of form error

In summary, in manufacturing processes two kinds of deviations are obtained:

- (a) low-frequency waviness deviations, often caused by loss of centricity in the spindle of tools or parts;
- (b) high-frequency waviness deviation (similar to a noisy error), often linked to a vibration in the cutting process or improper setting of the cutting parameters.

Thus a roundness deviation assumes a waviness form with a random perturbation superimposed (Fig. 1). Based upon the major influence of the two different kinds of manufacturing errors, the deviation appears to be more wavy and less random within a given range of error and vice versa.

Parametric model and distribution diagram of roundness deviation in accordance with least-squares substitute geometry. Angle coordinates are expressed in $2\pi/90$ radians

Development of a classifier cyclic/noisy deviations

Distribution diagram versus percentage of wave amplitude within roundness error amplitude

Clustering Algorithm

Fig. 3 Lobe-filtering system of a pure sinusoid deviation

Fig. 4 Process of roundness error evaluation with the proposed system

Lobe Filtering

Exponential distribution with initial point γ

$$
D(\gamma, i) = \gamma + (\pi \cdot i^{-1})/2, \quad i = 2, ..., n_2
$$
 (5)

This distribution is exponential because the distance between the starting point and the $iⁿ$ location decreases in accordance with I^1 (i.e. the period of the Fourier series). If z_i denotes the measurements at the locations

Modello di rumore

E max rumore, $f \in [0,1]$

 $y_i - y_{i,1} \le f \cdot E, \quad i = 3, ..., n_2 + 2$ (7)

where $f \in E$ is a non-negligible percentage of roundness error $[5]$.

Modified IPR for noisy filtering

As the IPR gives a prediction based on past data, this algorithm can be used to smooth the noise by means of a linear combination between the predicted value Y_i and the obtained measurement y_i , like the following:

$$
y'_{i} = \alpha Y_{i} + (1 - \alpha) y_{i}, i = s, ..., n_{2} + 2, \alpha \in [0, 1]
$$
 (8)

The Minimum Zone Roundness problem (MZR)

• Find a point (x, y) such that the distance between the blue line and the pink line is minimal (the minimal circular ring enclosing the cloud).

Deviations type

Fig. 3. Roundness deviations of samples no. 2-7 of Table 2 with the reference circles in Fig. 1.

Genetic algorithms for the MZT

1246

A. Rossi et al. / Measurement -

Table 1

Genetic operators, their parameters and mechanisms.

Fig. 2. Standard GA scheme.

GA time reduction

- 1. reduction of population, *pop*
- 2. reduction of crossover prob., *pc*
- 3. stop the algorithm as earlier as possible, *N*
- 4. Concentrate the population, *E*

Reduction of the population (*pop*)

A. Rossi et al./ Measurement 44 (2011) 1243-1252

Fig. 5. GA parameters exploration: target roundness error R^* on dataset no. 1 of Table 2 as a function of pc and pm for two different values of pop upon an area of promising configuration (from Fig. 4) of pc and pm.

1249

Combined optimization of parametes *pc* e *pm*

Fig. 6. GA parameters optimization: average computation time on the samples of Table 2 as a function of pc and pm for four different values of pop and convergence of the average roundness error for the selected parameters (left inset).

Computation time by GA

Fig. 7. Convergence of MZT for the seven samples of Table 2 with the selected values of the optimal parameters in Table 4.