Colab Python Vision
Inspection Systems

Francesco Lupi
2024/2025

0.1 What is Python?

Python is a "high level" programming language (i.e., syntax) that makes it accessible and productive for programmers from any
background or experience level. If you are curious check out the LINK.

You can:

download Python on your pc from the "download" button. To use it you need to install a "code editor" or better "Integrated
Development Environment" (IDE). An example Pycharm

use web-based python notebook editors : Colab and Jupyter. Colab is hosted on a virtual machine which is essential another
computer at Google running your code (NB: Colab has already installed many of the popular libraries you may need to run your
code and can be accessed from anywhere).

NOTE: IDEs delivered as cloud-based Software-as-a-Service (SaaS) offer unique advantages over local development environments.
-Firslty there is no need to download software and configure local environments, developers can get on projects right away.

-Secondly, the a high level of standardization for team members' environments is provided, and the team can align the operations
performed on their own computers.

-Thirdly, centralized development environment management also helps reduce potential security and intellectual property concerns
because the code does not reside on individual developer computers.

-Lastly and obviously, the impact of processes on local computers changes.

https://www.google.com/url?q=https%3A%2F%2Fwww.python.org%2F
https://www.google.com/url?q=https%3A%2F%2Fwww.python.org%2F
https://www.google.com/url?q=https%3A%2F%2Fwww.jetbrains.com%2Fpycharm%2F
https://colab.research.google.com/notebooks/basic_features_overview.ipynb#scrollTo=d4L9TOP9QSHn
https://www.google.com/url?q=https%3A%2F%2Fjupyter.org%2F

0.2 Python core concepts

° # Variables, type, and string concatenation (functions of the object)

Defining all the variables of interest

string = "Hello, this year is " # STRING

year = 2017 # INTEGER

today temperature = 28.6 # FLOAT

hot = True # BOOLEAN (be careful, Python is case-sensitive)

Calling a function that uses all the variables defined above
print(string.upper() + str(year + 5) + ' and in November it will be
type(string)

+ str(today_ temperature) + ' degrees. Sad, but ' + str(hot))

Other conversions

int(float)

int(string)

int(boolean)

float(string)

float(int) ------ be careful
float(boolean) ------ be careful
etc..

HoH K H H K H K

+

Type conversion and rounding
= int(round(today temperature, ©))

w oW

0.2 Python core concepts

[1 #aritmetic operators

#+

#-

#/ note that / return a float and // return an integer
#*

#others like exponentation etc.

#comparison operators
#>

#>=
#<

#logical operators

#AND (both are true)
#0R (at least one is true)
#NOT

0.2 Python core concepts

o # Print numbers from 1 to 9 using While, For loops, and List
Xx =[] # Empty list to store the numbers

While loop to print numbers from 1 to 9

1=1

while i < 1@:
print(i) # Print the current value of i
X.append(i) # Append the current value of i to the list x
i=1+1 # Increment i by 1

print('DONE while loop')

For loop to iterate over the list x and print each element
for element in x:
print(element)
print(x) # Print the entire list
print('DONE for loop')

Using range to print numbers from @ to 8
for el in range(i):
print(el)

0.2 Python core concepts

o # User-Defined Functions (UDFs)
1. What arguments (if any) it takes
2. What values (if any) it returns

Declare the name of the function
def MIA addizione(a, b):
Compute the sum of the two inputs and save in a variable
c=a+b
Return the value
return c

Now call the function

Calling the function with string arguments
print(MIA addizione('ciao’, ' come va')) # String addition is concatenation!

Calling the function with integer arguments
print(MIA addizione(5, 3)) # Integer addition

1. Image Pre-Processing

1.1 Upload the packages needed for
Image processing

[1] # NumPy is a Python library used for working with arrays
np = common abbreviation for numpy
import numpy as np

[2] # matplotlib is a collection of functions that make matplotlib work like MATLAB (for plots)
from matplotlib import pyplot as plt
#matplotlib inline
#& possibile importare tutta la libreria ma & piu onerosa
import matplotlib as mplt

[3] # OpencCV-Python is a library of Python bindings designed to solve computer vision problems
import cv2

[4] #packages provides a number of general image processing and analysis functions that
#are designed to operate with arrays of arbitrary dimensionality.
import scipy.ndimage as filt

[29] !pip install gdown # Install gdown if you don't have it

import gdown

1.2 Work with the image by making some
tests and relative visualizations for visual
confirmation

o #LOAD IMAGE INTO THE WORKFOLDER
1. use luget function to load image from web or drive via LINK
2. load it manually drag and drop
3. upload it from local. Usually r is used before the path to make it raw.

#(example from WEB: fractal plant image)
##lwget "https://digitalreflectionswamfl4d.files.wordpress.com/2014/09/cropped-ferns.jpg” -0 FractalPlant.jpg

#(example from web: peso image)
#lwget "http/" -0 peso.jpg

#(example from Gdrive: Coin image made with smartphone)
Google Drive file ID
file id = "1GR57ZcG_QuCZlsuB 7 8mhfrpT193y2E’

Construct the download URL
url = t"https://drive.google.com/uc?id={file id}"

Download the file
gdown.download(url, 'peso.jpg’', quiet=False)

#(example from local: interactive)
##from google.colab import files
##files.upload()

1.2 Work with the image by making some
tests and relative visualizations for visual
Conflrmatlon

#VARIABILE img: np matrix made by three channels, namely Red Green Blue (RGB)

#When using cv2.imread remeber that store image in BGR so you need to convert
##imgl = cv2.imread(’/content/FractalPlant.jpg")
##imgl = cv2.cvtColor(imgl, cv2.COLOR BGR2RGB)

img = plt.imread(’/content/peso.jpg’)

type(img)

=¥ numpy.ndarray

@© #CHECK the ndarray

#number of dimensions of the matrix
print(np.ndim(img))

#matrix shape. N of rows, columns and the dimention of the matrix
print(np.shape(img))

#total product of elements (i.e., pixels) in row*columns*dimentions
print(np.size(img))

l
4

3
(1450, 1462, 3)
6359700

1.2 Work with the image by making some
tests and relative visualizations for visual
confirmation

° #VISUALIZE the image as the superimposition of the three channels (or dimentions)
#in a plot with the row and columns dimentions

plt.imshow(img)

3+ <matplotlib.image.AxesImage at ©x790cfbda7cde>
0

200 A

400 A

1200 A

1400 A
0 200

400 600 800 1000 1200 1400

1.2 Work with the image by making some
tests and relative visualizations for visual
confirmation

o #CHECK1 THE IMAGE MATRIX

print(img) #image saved as a pixel matrix

5% [[[255 255 255]
[255 255 255]
[255 255 255]

[255 255 255]
[255 255 255]
[255 255 255]]

[[255 255 255]
[255 255 255]
[255 255 255]

[255 255 255]
[255 255 255]
[255 255 255]]

[[255 255 255]
[255 255 255]
[255 255 255]

[255 255 255]
[255 255 255]
[255 255 255]]

1.2 Work with the image by making some
tests and relative visualizations for visual
confirmation

[41] #CHECK2 THE IMAGE MATRIX
print(img[2ee,:,1]) #print the line 2@® of the image on the GREEN channel (R=8, G=1, B=2)

3% [255 255 255 ... 255 255 255]
™~ 4 4
o #CHECK3 THE IMAGE MATRIX

print(img[2ee,300:310,1]) #print the values from 300 to 310 of image row 200 on the GREEN channel (R=0, G=1, B=2)

—5¥ [61 60 58 55 63 65 63 58 60 68]

1.2 Work with the image by making some

tests and relative visualizations for visual
confirmation

©

)

#SCALE THE SIZE OF THE IMAGE

#Scaling Factor or Scale Factor is usually a number that scales or multiplies some quantity,
#in our case the width and height (i.e., rows and columns) of the image.

#It helps keep the aspect ratio intact and preserves the display quality. So the

#image does not appear distorted, while you are upscaling or downscaling it.

#del scale down
scale down = ©.01
#scale down = '9.6°

scaled f down = cv2.resize(img, None, fx= scale down, fy= scale down, interpolation= cv2.INTER_LINEAR)

plt.imshow(scaled f down)

plt.title('scaled dimension factor="+str(scale down))
plt.show()

plt.imshow(img)

plt.title('original dimension 660x660")

#more info about resizing here: https://learnopencv.com/image-resizing-with-opencv/

scaled dimension factor=0.01

| iy |

1.3 Esploring the 3 channels: Red,Green,
Blue (RGB

#IMAGE SINGLE BAND PLOT (RGB)

#INFO about Color space: https://learnopencv.com/color-spaces-in-opencv-cpp-python/
#Difference between additive primaries (RGB - emitted spectrum) and subtractive primaries (CMY - white light incident on pigment, absorbed spectrum)

provaBanda = img.copy() # This will create a shallow copy by initializing a whole different instance rather than referencing it (you reference it by using the '=' operator in numpy).
#More info here https://numpy.org/doc/stable/reference/generated/numpy.copy.html
#NOTE1: provaBanda = img[:,:,:] acts the same as .copy(). When you want to copy all the components, use .copy() or select all the components [:,:,....]

#NOTE2: x = img[:,:,1] acts as a shallow copy as well. When you want to copy a component and assign it to a new vector, there's no need to use .copy()

The band that T do not set to @ is the one chosen (R=B; G=1; B=2)
provaBanda[:,:,0] = @ # Set R to zero
provaBanda[:,:,2] = @ # Set B to zero

plt.imshow(provaBanda)

plt.title('3 matrices: R, B set to zero and G from @ to 255")

plt.show()

plt.imshow(img[:,:,1], cmap="gray') # Without cmap, the one-dimensional plot uses a standard cmap that highlights differences
plt.title('single matrix: G from @ to 255")

plt.show()

plt.imshow(img)

plt.title('original 3 matrices and related 3 channels')

1.3 Esploring the 3 channels: Red,Green,
Blue (RGB

[] #COLOR SPACES RGB, HSV, HLS

#HSV (Hue, Saturation, value)
img3 = cv2.cvtColor(img, cv2.COLOR _RGB2HSV)

#HLS (Hue, Lightness, Saturation)
##img2 = cv2.cvtColor(img, cv2.COLOR_RGB2HLV)

1.4 Grayscale: 256 values in the gray
shadows from white to black

° # Usually, VALUE (luminosity) is used to convert an image to grayscale
(I could use R, G, or B indifferently for grayscale, which one to use? For this, I convert to HSV and usually use V.
Note that for specific applications, a channel like G might be used if it highlights a better feature.)

img2 = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
lum_img = img2[:, :, 2] # Extracted and copied (in this case, no need to use .copy()) the component V = value (H=0; S=1; V=2)

Plot V using a colormap to only plot in grayscale [®,255] using a total of 256 values on a mono-dimensional matrix (NOT 256 ON the 3 RGB channels)
BE CAREFUL when using the function imshow without cmap='gray' like this "plt.imshow(lum img)™

In this case, it considers all the 3 channels superimposed (256 red, 256 green, 256 blue).

plt.imshow(lum_img, cmap='gray"')

Add colorbar and title
plt.colorbar()
plt.title('Plot VALUE in grayscale')

1.4 Grayscale: 256 values in the gray
shadows from white to black

o # GRAYSCALE IMAGE CONVERSIOM USING prebuilt function. In some cases, it works better.
imgGray = cv2.cvtColor(img, cv2.COLOR RGB2GRAY) # Use prebuilt function to convert RGB (660,660,3) to GRAY SCALE (660,660)

plt.imshow(imgGray, cmap="gray') # REMINDER: To plot MONO-DIMENSIONAL matrices, use cmap ‘gray’
plt.colorbar()

plt.title('Grayscale plot using prebuilt function')

plt.show()

plt.imshow(img)

plt.title('Original image with 3 channels")

1.4 Grayscale: 256 values in the gray
shadows from white to black

© #REGION OF INTEREST (ROI) or CROP

imgplot=plt.imshow(img[0:300,0:300])

—

2. Histograms and
Binarization: Black and White

2.0 Light profile

(V)

)

#Plot one row in the LIGHT channel
img3 = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
plt.plot(img3[1@8,:,1])

[<matplotlib.lines.Line2D at 6x798cf9ef@5e6>]

250 1

225 A

200 A

175 -

150 A

125 1

100 A

75 A

50_

0 200 400 600 800 1000

1200

1400

2.1 Gray histogram

(V)

#GRAY historgram (USE THIS ONE)
plt.plot(filt.histogram(imgGray[:,:], @, 255, 256)) #immagine, min,max, n classi
plt.title('Istogramma grigi')

)

Text(9.5, 1.9, 'Istogramma grigi')
Istogramma grigi

400000 -

300000

200000 -

100000 A

_..-""'—__‘-."""--.._-_
0- - —

0 50 100 150 200 250

2.2 Global Binarization (Manual)

° # GLOBAL MANUAL BINARIZATION: FOR LOOP

G

MONOCHAMNNEL VERSION
thresh = 254 # Set the threshold for binarization based on the bi-modal histogram (in this case, for the first example, let's consider the green channel)
imgBIN = np.zeros((rishor, risver)) # Create a matrix of zeros (black) with the image's row and column dimensions
Loop for binarization where I assign a value of 255 (white) for all pixels above the threshold
for riga in range(rishor):
for col in range(risver):
if img[riga, col, 1] »= thresh: # CHOSEN MONOCHANNEL
imgBIN[riga, col] = 255

plt.imshow(imgBIN, cmap='gray') # Use cmap "gray' to plot black and white (using the 0,255 value scale)
plt.title('Binarized image based on the green channel MANUAL CODE")
plt.show()

GRAYSCALE VERSION (USE THIS PREFERABLY WHEM YOU WANT TO BINARIZE AND WORK ON GRAYSCALE INPUT IMAGE)
thresh = 254 # Set the threshold for binarization based on the bi-modal histogram (usually grayscale histogram)
imgBIN = np.zeros((rishor, risver)) # Create a matrix of zeros (black) with the image's row and column dimensions
Loop for binarization where I assign a value of 255 (white) for all pixels above the threshold
for riga in range(rishor):
for col in range(risver):
if imgGray[riga, col] >= thresh: # GRAYSCALE
imgBIN[riga, col] = 255

plt.imshow(imgBIN, cmap='gray') # Use cmap 'gray' to plot black and white (using the 0,255 value scale)
plt.title('Binarized image based on grayscale MANUAL CODE')

2.3 Global Binarization (Automated)

I
o # GLOBAL AUTOMATED BINARIZATION: SOLUTION 1

threshold = 254 # Create threshold based on the grayscale histogram
imgbin = ((imgGray > threshold))

plt.imshow(imgbin, cmap="gray")
plt.title(’'Binarized image based on grayscale PREBUILT CODE')

5¥ Text(e.5, 1.9, 'Binarized image based on grayscale PREBUILT CODE')

Binarized image based on grayscale PREBUILT CODE
0

200 4

400 A

600

800

1000

1200

2.3 Global Binarization (Automated

© # GLOBAL AUTOMATED BINARIZATION: SOLUTION 2 - OpencV function cv2.threshold + o B LT

INFO1: About cv2.threshold here https://www.pyimagesearch.com/2021/04/28/opencv-thresholding-cv2-threshold/#:~:text=We%2Buse¥20the¥k20cv2. ,TH%20%201s%20the¥20threshold%2evalue.)

INFO2: About OpencVv here https://learnopencv.com/opencv-threshold-python-cpp/

NOTE1: Working on a grayscale image for binarization usually gives better results (imgGray).
It’s also possible to binarize by considering a channel of the image (e.g., the green channel img[:,:,1]) in specific cases, as mentioned earlier, but it should generally be avoidec

NOTE2: The cv2.threshold function returns a tuple of 2 values: the first, T, is the threshold value. In the case of simple thresholding, this value is trivial since we manually supy
But in the case of Otsu’s thresholding, where T is dynamically computed for us, it’s nice to have that value. The second returned value is the thresholded image itself.

T1, threshl = cv2.threshold(imgGray, 254, 255, cv2.THRESH BINARY) # Image input, threshold T, output value for pixels above the threshold
Thresholding method chosen: BINARY, in this case, ANY pixel intensity p that is greater than T is set to the output value, and any p that is less than T is set to @

Let's see other methods

T, thresh2 = cv2.threshold(imgGray,
T, thresh3 = cv2.threshold(imgGray,
T, thresh4a = cv2.threshold(imgGray,
T, threshs = cv2.threshold(imgGray,

titles

250,
250,
250,
250,

255,
255,
255,
255,

['original Image', 'BINARY', 'BINARY

cv2.THRESH BINARY INV) # Inverse of BINARY function (sets pixels above threshold to @ and those below to the output value)

cv2.THRESH_TRUNC) # The destination pixel is set to the threshold if the source pixel value is greater than the threshold. Otherwise, it
cv2.THRESH TOZERO) # The destination pixel value is set to the pixel value of the corresponding source if the source pixel value is gre:
cv2.THRESH_TOZERO _INV) # Inverse of TOZERO function (The destination pixel value is set to zero if the source pixel value is lower than

INV', 'TRUNC', 'TOZERO', 'TOZERO INV']

images = [img, threshl, thresh2, thresh3, thresh4, threshs]

for i in range(6):

plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray’)

plt.title(titles[i])
plt.xticks([]), plt.yticks([])

2.3 Global Binarization (Automated)

(A A TR Y = I 1T I
o # GLOBAL ADVANCED AUTOMATIC THRESHOLD (OTSU): Using OpenCV

(T, threshoTSU) = cv2.threshold(imgGray, @, 255, cv2.THRESH OTSU) # @ in this case means 'I don't care' about the threshold.

In this way, the algorithm chooses the optimal value for T by itself. It is based on the fact that the grayscale histogram is bimodal

(Otsu’s method assumes that our image contains two classes of pixels: the background and the foreground) and tries to find the optimal T val
plt.imshow(threshoTsu, ‘gray')

print('According to 0TSU, the optimal threshold is T=', T) # Let's see the optimal threshold that OTSU found. It’s not that optimal.
This is because the histogram is not bimodal, so it cannot find the optimal T in an optimized way.

9~ According to oTsu, the optimal threshold is T= 163.0
0

200 A

1000

2.4 Adaptive threshold (Automated

o # AUTOMATIC DIMAMIC (aka ADAPTIVE) THRESHOLD

#INFO: https://www.pyimagesearch.com/2021/85/12/adaptive-thresholding-with-opencv-cv2-adaptivethreshold/

#when the lighting conditions are non-uniform — such as when different parts of the image are illuminated more than others,

#we can run into some serious problem. And when that is the case, we will need to rely on ADAPTIVE thresholding.

#rhe general assumption that underlies all adaptive and local thresholding methods is that smaller regions of an image are more likely to have
#thus a specif threshold is set for specific areas. Choosing the size of the pixel neighborhood for local thresholding is therefore crucial. To

threshDINAMICmean = cv2.adaptiveThreshold(imgGray, 255,cv2.ADAPTIVE THRESH MEAN C, cv2.THRESH BIMARY INV, 659,1) #image in input, #output value
#cv2 . ADAPTIVE THRESH MEAN C indicate that we are using the arithmetic mean of the local pixel neighborhood to compute our threshold value of T.
#The fourth value to cv2.adaptiveThreshold is the threshold method, again just like the simple thresholding and Otsu thresholding methods we pa
#The fifth parameter is pixel neighborhood size (aka Kernel). DEVE ESSERE DISPARI in questo algoritmo. Computing the mean grayscale pixel inten
#Constant C subtracted from the mean or weighted mean (see the details below). Normally, it is positive but may be zero or negative as well.

#usiamo un altro metodo cv2.ADAPTIVE THRESH GAUSSIAN C
threshDINAMICgauss = cv2.adaptiveThreshold(imgGray, 255,cv2.ADAPTIVE THRESH GAUSSIAN C, cv2.THRESH BINARY INV, 151,1)

plt.imshow(threshDINAMICmean, 'gray’)
plt.title('mean")

plt.show()

plt.title('Gaussian average')
plt.imshow(threshDINAMICgauss, ‘gray')

3.Image filtering

3.0 Kernel

1 v Y e = owe A w

° #texample of 3x3 IDENTITY kernel.
#NOTE: the sum of the element must be 1 because is a weighted mean. Each element of the kernel is multiplied for the elment of the matrix below

kernell = np.array([[0, @, @],
[@J 1’ B]J‘
(e, @, @]])

3.0 Kernel

© #ExAMPLE 1: filter2p() function from Opencv

Identity = cv2.filter2D(img,-1, kernell)

#The first argument is the source image

#The second argument is ddepth, which indicates the depth of the resulting image. A value of -1 indicates that the final image will also have t
#The final input argument is the kernel, which we apply to the source image

plt.imshow(Identity)
plt.title('Identity filter')
plt.show()

plt.imshow(img)
plt.title('Original Image')

)

Identity filter

200 A

400 A

600

3.1 Blurring

Blurring - smoothes the image out.
blur = cv2.blur(img,(11, 11)) #uniform average. The function automatically created the kernel which elements sum is 1 (for aritmetic operation

gblur = cv2.GaussianBlur(img,(5,5),8) #weighted average. Gaussian blur weights pixel values, based on their distance from the center

#0f the kernel. Pixels further from the center have less influence on the weighted average. Applying blurring helps remove some of the high
#frequency edges in the image that we are not concerned with and allow us to obtain a more “clean” segmentation.

#kernel is required as input.

#facciamolo anche sull'imagine in scale di grigio

gblurGray= cv2.GaussianBlur(imgGray, (151,151),0)

titles = ['Original Image','Blurred’, 'Gaussian Blur', 'Gaussian blur Gray']
images = [img, blur, gblur, gblurGray]

for 1 in range(4):
plt.subplot(2,2,i+1),plt.imshow(images[i], "gray")
plt.title(titles[i])
plt.xticks([]),plt.yticks([])

[4)

Original Image

3.1 Blurring

#other algorithm blurring
plt.imshow(img, interpolation="bicubic")

S+ <matplotlib.image.AxesImage at ©x790cf597eb90>
0

200

400 -

600

800

1000 -

1200 A

1400 A
0 200

400 600 800 1000 1200 1400

3.1 Blurring

(V)

#other algorithm for blurring

median = cv2.medianBlur(img, 15) #In median blurring, each pixel in the source image is replaced by the median value of the image pixels in the

plt.imshow(median)

(¥

<matplotlib.image.AxesImage at @x790cf5a486a0>
0

200 -

400 A

1000 -

1200 -

1AnnN 4

T AP SRTCIL | O L S S

3.1 Blurring

- [—

o # IMPORTANT NOTE: USUALLY THE BEST BINARIZED IMAGE IS OBTAINED BY FIRST CONVERTING TO GRAYSCALE AND APPLYING BLURRING BEFORE BINARIZATION

BLURRING GRAYSCALE IMAGE. USE BLURRING MODERATELY, CHECK RESULTS VISUALLY, 11X11 SEEMS GOOD (EXPERIMENTALLY)
gblurGray = cv2.GaussianBlur(imgGray, (11, 11), @)

T, imgBINgrayBlur = cv2.threshold(gbhlurGray, 256, 255, cv2.THRESH BINARY TNV)
plt.imshow(imgBINgrayBlur, ‘'gray’)

3+ <matplotlib.image.AxesImage at @x79@cfbd25510>
0

200

400

600

800

3.1 Blurring

© #Algorithm for MASKING

imgMasked = cv2.bitwise and(img, img, mask=imgBINgrayBlur)
plt.imshow(imgMasked)

4]

<matplotlib.image.AxesImage at 0x790cf5cfb160>
0

200

400

600

800

1000

1200

1400
0 2000 400 600 800 1000 1200 1400

3.2 Sharpening

o # NOTE: Sum of kernel elements = 1
kernel3 = np.array([[e, -1, @],
[_11 5: _1]J
[GJ '11 IB]])

Working on an ROI: Region of Interest to better visualize the output of the operation
imgROI = img[@:308, ©:300] # ROI

sharp img = cv2.filter2D(imgR0OI, ddepth=-1, kernel=kernel3)

plt.imshow(sharp_img)

plt.title('sharp")

plt.show()

plt.imshow(imgROTI)
plt.title('original’)

4.
Morphological Operations

4.0 Other image example

o #import the fractal plant image and binarize it quickly.
#This particular image can be useful to understand some morphological operations.

lwget "https://digitalreflectionswamf14.files.wordpress.com/2014/89/cropped-ferns.jpg” -0 FractalPlant.jpg

imgFRAC = cv2.imread('/content/FractalPlant.jpg')

imgFRACgray = cv2.cvtColor(imgFRAC, cv2.COLOR BGR2GRAY) # Convert to grayscale
T, imgFRACgrayBIN = cv2.threshold(imgFRACgray, 118, 255, cv2.THRESH BIMARY) # Binarize

plt.imshow(imgFRACgrayBIN, 'gray’') # Plot the binarized image

4.1 Kernel definition

[71] #manually creation of structuring elements with help of Numpy. Usare elementl dispari
kernel = np.ones((5,5),np.uint8)
print(kernel)

[4)

[1]
1]
1]
1]

1]]

[I it
e e
o e
[=

[
[
[
[
[

™~ v o+

o #In some cases, you may need elliptical/circular shaped kernels. So for this purpose, OpencV has a function,
#cv2.getStructuringElement(). You just pass the shape and size of the kernel, you get the desired kernel.
Kl=cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))

K2=cv2.getStructuringtlement (cv2.MORPH ELLIPSE, (5,5))
K3=cv2.getStructuringtlement (cv2.MORPH CROSS, (5,5))

print(K1)
print()
print(K2)
print()
print(K3)

4.2 Erosion

o #The kernel slides through the image (same as in 2D convolution). A pixel in the original image (either 1 or @)
#will be considered 1 only if all the pixels overlapped by the kernel is 1, otherwise it is eroded (made to zero).
erosion = cv2.erode(thresh2,kernel,iterations = @)
plt.imshow(erosion, cmap='gray"')
plt.title('coin’)
plt.show()

erosion = cv2.erode(imgFRACgrayBIN,kernel,iterations = 3)
plt.imshow(erosion, cmap="gray")
plt.title('fractal plant®)

[4)

coin

200

400

600

4.2 Erosion

apply LOOP (iterative) erosions

for i in range(4):
eroded = cv2.erode(thresh2.copy(), kernel, iterations=i + 1)
plt.subplot(2,2,i+1),plt.imshow(eroded, "gray")
plt.title(i)

plt.show()

for i in range(4):
eroded = cv2.erode(imgFRACgrayBIN.copy(), kernel, iterations=i + 1)
plt.subplot(2,2,i+1),plt.imshow(eroded, ‘gray")
plt.title(i)

)

0
0 0
250 250
500 500
750 750
1000 1000
1250 1250

0 500 2 1000 0 500 3 1000

4.3 Dilatation

o #It is just opposite of erosion. Here, a pixel element (@ or 1) is turned to ‘1’ if at least one pixel under the kernel
is f1’. So it increases the white region in the image or size of foreground object increases
dilation = cv2.dilate(thresh2,kernel,iterations = 1)
plt.imshow(dilation , cmap="gray')
plt.show()

dilation = cv2.dilate(imgFRACgrayBIN,kernel,iterations = 1)
plt.imshow(dilation , cmap='gray")

[4)

200

400

600

800

4.4 Opening (erosion followed by dilation

o #Normally, in cases like NOISE removal, erosion is followed by dilation. Erosion removes
#white noises, but it also shrinks our object. So we dilate it. Since noise is gone, they won’t
#come back, but our object area increases.

opening = cv2.morphologyEx(thresh2, cv2.MORPH OPEN, kernel)
plt.imshow(opening , cmap="gray")
plt.show()

opening = cv2.morphologyEx(imgFRACgrayBIN, cv2.MORPH OPEN, kernel)
plt.imshow(opening , cmap="gray')

[4)

200

A

4.5 Closing (dilation followed by erosion)

o #It is useful in closing small holes inside the foreground objects, or small black points on the object
closing = cv2.morphologyEx(thresh2, cv2.MORPH CLOSE, kernel)
plt.imshow(closing , cmap="gray")
plt.show()

closing = cv2.morphologyEx(imgFRACgrayBIN, cv2.MORPH CLOSE, kernel)
plt.imshow(closing , cmap="gray")

[4)

200

400

600

800

1000

4.6 Top-hat

o #It is the difference between input image and Opening of the image
tophat = cv2.morphologyEx(thresh2, cv2.MORPH TOPHAT, kernel)
plt.imshow(tophat , cmap='gray")
plt.show()

tophat = cv2.morphologyEx(imgFRACgrayBIN, cv2.MORPH_TOPHAT, kernel)
plt.imshow(tophat , cmap='gray")

4.7 Bottom-hat (Black hat in Python)

o #It is the difference between Closing of the image and the input image

bothat = cv2.morphologyEx(thresh2, cv2.MORPH BLACKHAT, kernel)
plt.imshow(bothat , cmap="gray")
plt.show()

bothat = cv2.morphologyEx(imgFRACErayBIN, cv2.MORPH BLACKHAT, kernel)
plt.imshow(bothat , cmap='gray')

200
400
600

800

4.8 Gradient and convolution

{c} #It is the difference between dilation and erosion of an image. The result will
#look like the outline of the object.

gradient = cv2.morphologyEx(imgBINgrayBlur, cv2.MORPH GRADIENT, kernel)
plt.imshow(gradient, cmap="'gray")
plt.show()

gradient = cv2.morphologyEx(imgFRACgrayBIN, cv2.MORPH_GRADIENT, kernel)
plt.imshow(gradient , cmap="gray")

200
400
600
800

1000

4.9 Skeletonizing or Medial Axis Transform

o #Skeletonization is a process for reducing foreground regions in a binary image to a skeletal
#that largely preserves the extent and connectivity of the original region while throwing away most of
#the original foreground pixels. A way to think about the skeleton is as the loci of centers of bi-tangent circles
#that fit entirely within the foreground region being considered.

#plotto ROI dell'originale
plt.imshow(imgFRACgrayBIN[200:308,400:600], cmap=plt.cm.gray),plt.title('Original"’)
plt.show()

#method 1
from skimage.morphology import medial axis, skeletonize #importo pacchetto

Compute the medial axis (skeleton)

skell,distance = medial axis(imgFRACgrayBIN, return_distance=True)

Distance to the background for pixels of the skeleton

dist on skel = distance * skelil

#confrontiamo i risultati rispetto ad una ROI

plt.imshow(dist on skel[200:300,400:600], cmap='gray'),plt.title('Method 1: notare che & in scala di grigio per rappresentare lo spessore ')
plt.show()

4.9 Skeletonizing or Medial Axis Transform

o #method 2
#I MEED AN IMAGE WITH ONLY @ AND 1, NOT @ AND 255

righe = len(imgFRAC[:, @, 1]) # number of rows
colonne = len(imgFRAC[@, :, 1]) # number of columns

imgol = np.zeros((righe, colonne)) # create a matrix of zeros
for riga in range(righe):
for col in range(colonne):
if imgFRACgrayBIN[riga, col] > @:
img@1[riga, col] = 1 # set to 1 if the pixel is greater than @

from skimage.morphology import skeletonize as sk # import package

Compute the skeleton
skel2 = sk(imgal)

Plot the original image (cropped part)
plt.imshow(imgFRACgrayBIN[200:300, 400:600], 'gray'), plt.title('Original’)
plt.show()

Plot the skeleton (cropped part)
plt.imshow(skel2[200:300, 400:600], cmap=plt.cm.gray), plt.title('Method 2: note that it is binary')

4.10 Others

(’ plt.imshow(filt.laplace(imgGray[100:500,100:200]), cmap='gray') #edges grigi

plt.show()
B,
© plt.imshow(img[100:500,100:200])
50 5% <matplotlib.image.AxesImage at @x790cfaeacf10>
05
100
50
150 100 +
150 1
e latal
200 4
250
o plt.imshow(filt.laplace(imgBINgrayBlur[100:500,100:200]), cmap='gray') #edges binary 300
Sv <matplotlib.image.AxesImage at ©x790cf4d34bed> 350
0
0 50
50
100
150
200

250

4.10 Others

© #ALTERNATIVE CONTOUR OpencV function
#the findContours() function has three required arguments
#image: The binary input image obtained in the previous step.
#mode: This is the contour-retrieval mode. e.g. RETR _TREE means the algorithm will retrieve all possible contours from the binary image. More c

#method: This defines the contour-approximation method. In this example, we will use CHAIN APPROX_ NONE.Though slightly slower than CHAIN_ APPROX

#More info about countorning here: https://learnopencv.com/contour-detection-using-opencv-python-c/

#get contours
contours, hierarchy = cv2.findContours(imgBINgrayBlur,cv2.RETR TREE, cv2.CHAIN_ APPROX_NONE)

#plot contours SUPERIMPOSED on the original
image copy = img.copy()
cv2.drawContours(image=image copy, contours=contours, contourIdx=-1, color=(@, 255, ©), thickness=2, lineType=cv2.LINE_AA)

plt.imshow(image copy)

S+ <matplotlib.image.AxesImage at @x790cf5215e10>
0

200 A

400 A

S.
Blob Operations

5.1 Example 1

o # I create a series of blobs inside the coin by performing erosion
eroded = cv2.erode(thresh2.copy(), kernel, iterations=3)
plt.imshow(eroded, ‘gray’)

=~ <matplotlib.image.AxesImage at @x790cf4459cca>
0

200
400
600
800

1000

1200

5.1 Example 1

o # Set up the SimpleBlobDetector with default parameters.
params = cv2.SimpleBlobDetector Params()

Filter by Area.

params.filterByArea = 1

params.minArea = 100

params.maxArea = 300 # Specify max area because the default is not infinite

Filter by Circularity
params.filterByCircularity = @
params.minCircularity = 0.9
params.maxCircularity = 1

Filter by Convexity

params.filterByConvexity = @

params.minConvexity = ©.1 # Set a small positive value
params.maxConvexity = 1

Filter by Inertia
params.filterByInertia = @
params.minInertiaRatio = 9.9
params.maxInertiaRatio = 1

Create the detector
detector = cv2.SimpleBlobDetector_create(params)

5.1 Example 1

#Detect
keypoints = detector.detect(eroded)

O

#Plot
keypoints
S+ (< cv2.KeyPoint @x79@cfa424bae>,

cv2.KeyPoint @x79@8ct459abe>,
cv2.KeyPoint @x79@8ct459ae50>,
cv2.KeyPoint ex79acfaf22b2e>,
cv2.KeyPoint @x79@cf5066bao>,
cv2.KeyPoint @x79@cf55dcefe>,
cv2.KeyPoint ex798ct55dd260>,
ru? _KeuPnint Gx790cf55dee3as .

MM M A A A A A

5.1 Example 1

o im with keypoints = cv2.drawKeypoints(eroded, keypoints, np.array([]), (255,0,8), cv2.DRAW MATCHES FLAGS DRAW RICH KEYPOINTS)

plt.figure(figsize = (15,15))
plt.imshow(im with keypoints)

plt.title('Blob with an area between 1@ and 180 pixels highlighted. Note that the larger ones were not highlighted')

3> Blob with an area between 10 and 100 pixels highlighted. Note that the larger ones were not highlighted

200

5.2 Example 2

© # construct the correct download URL
url = "https://drive.google.com/uc?id=17SEsD3NzAC-vE3zVXsnhk577g99Td%ez"

Download the file
gdown.download(url, ‘'prova.png', quiet=False)

Read the image
immagine = plt.imread('/content/prova.png’)

Apply threshold
T, BW = cv2.threshold(immagine, ©, 255, cv2.THRESH BIMNARY)
I = BW.astype(np.uintg)

Show the result

plt.imshow(I, cmap="gray')

plt.title('Sample Image: Geometric Shapes')
plt.show()

5.2 Example 2

© import cv2 ™V o0 E 8 R O

Set up the SimpleBlobdetector with default parameters.
params = cv2.SimpleBlobDetector Params()

on/off for the following params, 1 means I activate the control and need to define minimum and maximum parameters, @ means I turn it off.

Filter by Area.

params.filterByArea = 1

params.minArea = 5600

params.maxArea = 10000 # specify the max, because by default it's not infinite

Filter by Circularity
params.filterByCircularity = @
params.minCircularity = .9
params.maxCircularity = 1

Filter by Convexity
params.filterByConvexity = 1
params.minConvexity = ©.9
params.maxConvexity = 1

Filter by Inertia
params.filterByInertia =
params.minInertiaRatio = .9
params.maxInertiaRatio =

|
@

|
=

Create the detector with the parameters set above
detector = cv2.SimpleBlobDetector create(params)

Interactive Colab file

* https://colab.research.google.com/drive/12xXpXw49qgFtrtnkwr1F/

a-FxEMghVjyj#scrollTo=Lz8pGt1SRj8R

https://colab.research.google.com/drive/12xXpXw49qFtrtnkwr1F7a-FxEMghVjyj#scrollTo=Lz8pGt1SRj8R
https://colab.research.google.com/drive/12xXpXw49qFtrtnkwr1F7a-FxEMghVjyj#scrollTo=Lz8pGt1SRj8R

	Diapositiva 1: Colab Python Vision Inspection Systems
	Diapositiva 2: 0.1 What is Python?
	Diapositiva 3: 0.2 Python core concepts
	Diapositiva 4: 0.2 Python core concepts
	Diapositiva 5: 0.2 Python core concepts
	Diapositiva 6: 0.2 Python core concepts
	Diapositiva 7
	Diapositiva 8: 1.1 Upload the packages needed for image processing
	Diapositiva 9: 1.2 Work with the image by making some tests and relative visualizations for visual confirmation
	Diapositiva 10: 1.2 Work with the image by making some tests and relative visualizations for visual confirmation
	Diapositiva 11: 1.2 Work with the image by making some tests and relative visualizations for visual confirmation
	Diapositiva 12: 1.2 Work with the image by making some tests and relative visualizations for visual confirmation
	Diapositiva 13: 1.2 Work with the image by making some tests and relative visualizations for visual confirmation
	Diapositiva 14: 1.2 Work with the image by making some tests and relative visualizations for visual confirmation
	Diapositiva 15: 1.3 Esploring the 3 channels: Red,Green, Blue (RGB)
	Diapositiva 16: 1.3 Esploring the 3 channels: Red,Green, Blue (RGB)
	Diapositiva 17: 1.4 Grayscale: 256 values in the gray shadows from white to black
	Diapositiva 18: 1.4 Grayscale: 256 values in the gray shadows from white to black
	Diapositiva 19: 1.4 Grayscale: 256 values in the gray shadows from white to black
	Diapositiva 20
	Diapositiva 21: 2.0 Light profile
	Diapositiva 22: 2.1 Gray histogram
	Diapositiva 23: 2.2 Global Binarization (Manual)
	Diapositiva 24: 2.3 Global Binarization (Automated)
	Diapositiva 25: 2.3 Global Binarization (Automated)
	Diapositiva 26: 2.3 Global Binarization (Automated)
	Diapositiva 27: 2.4 Adaptive threshold (Automated)
	Diapositiva 28
	Diapositiva 29: 3.0 Kernel
	Diapositiva 30: 3.0 Kernel
	Diapositiva 31: 3.1 Blurring
	Diapositiva 32: 3.1 Blurring
	Diapositiva 33: 3.1 Blurring
	Diapositiva 34: 3.1 Blurring
	Diapositiva 35: 3.1 Blurring
	Diapositiva 36: 3.2 Sharpening
	Diapositiva 37
	Diapositiva 38: 4.0 Other image example
	Diapositiva 39: 4.1 Kernel definition
	Diapositiva 40: 4.2 Erosion
	Diapositiva 41: 4.2 Erosion
	Diapositiva 42: 4.3 Dilatation
	Diapositiva 43: 4.4 Opening (erosion followed by dilation)
	Diapositiva 44: 4.5 Closing (dilation followed by erosion)
	Diapositiva 45: 4.6 Top-hat
	Diapositiva 46: 4.7 Bottom-hat (Black hat in Python)
	Diapositiva 47: 4.8 Gradient and convolution
	Diapositiva 48: 4.9 Skeletonizing or Medial Axis Transform
	Diapositiva 49: 4.9 Skeletonizing or Medial Axis Transform
	Diapositiva 50: 4.10 Others
	Diapositiva 51: 4.10 Others
	Diapositiva 52
	Diapositiva 53: 5.1 Example 1
	Diapositiva 54: 5.1 Example 1
	Diapositiva 55: 5.1 Example 1
	Diapositiva 56: 5.1 Example 1
	Diapositiva 57: 5.2 Example 2
	Diapositiva 58: 5.2 Example 2
	Diapositiva 59: Interactive Colab file

