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Regression 2

In1 In2 In3 Out

5 A 1.5 1.1

3 B 3.2 3.1

2 B 3.4 5.3

… … … …

[ 5 ; A ; 1.5 ]

[ 1.1 ]

[ 3 ; B ; 3.2 ]

[ 3.1 ]
[ 2 ; B ; 3.4 ]

[ 5.3 ]

An object

Input 
variables

An output
variable

Regression model training

Regression
model

C h a r a c t e r i s t i c s

Using the model
to predict output values for new objects

[ 4 ; A ; 1.4 ]

[ ??? ]

• One of the machine learning methods
(supervised learning);

• It requires data on certain objects (e.g. physical, 
abstract objects, events, states);

• The output value of each object is a number.



Simple linear regression 3

Feature
(input

variable)

Result
(output

variable)

How far will a cyclist travel during his training?Number of 
energy bars

3

4

1

Distance

30 km

?? km

10 km

𝑦 = 𝑎0 + 𝑎1𝑥

A n e x a m p l e

2 20 km
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Feature
(input

variable)

Result
(output

variable)

Number of 
energy bars

3

4

1

Distance

30 km

40 km

10 km

𝑦 = 𝑎0 + 𝑎1𝑥

A n e x a m p l e

2 20 kmWhy in real conditions the relationship between distance and 
the number of bars may not be perfectly linear?

Training longer/shorter than usual, unfavorable weather, traffic jams…

𝑎1 – regression coefficient for the input variable 𝑥
𝑎0 – intercept (often denoted as 𝑏)

This randomness is represented by 𝜀.

+ 𝜀
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C h a r a c t e r i s t i c s

• It allows to express the relationship between two variables;

• It is used to predict continuous values (the output variable is a 
continuous variable, i.e. it can take on any values within a 
certain numerical range);

• The values of the output variable are predicted based on the 
values of one quantitative input variable;

• The relationship between the input and output variable must 
be approximately linear to enable accurate prediction of the 
value of the output variable based on the input variable.

Feature
(input

variable)

Result
(output

variable)

Number of 
energy bars

3

4

1

Distance

30 km

40 km

10 km

2 20 km
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Input variable (𝑥)
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• The goal is to fit a straight line that best reflects the 
relationship between variables 𝑥 i 𝑦 (data fitting).

• The coefficient of the input variable ෞ𝑎1 (slope of the 
regression line) and the intercept ෞ𝑎0 (value of 𝑦 when 
𝑥 = 0) must be determined.

• The most popular method: Ordinary Least Squares 
(OLS).

• OLS minimizes the total distance of all data points from 
the regression line. 

ො𝑦 = ෞ𝑎0 +ෞ𝑎1𝑥
? ?

?

?

?
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A n e x a m p l e

ො𝑦 = −426.831 + 3.139 ∙ 0.3 ∙ 1000 ≈ 515

Carats times 1000
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1000

6000

2250250

We want to find the relationship between the price of 
diamonds (𝑦) and the number of carats of the 
diamond, with carats multiplied by 1000 (𝑥).

The obtained regression line determines the 
estimated value of the diamond price ( ො𝑦) for any 

value of the input variable (𝑥), e.g. for a diamond that 
weighs 0.3 carats:
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Simple linear regression 8

D e t e r m i n i n g m o d e l  f i t t i n g e r r o r s

Carats
*1000

Price

300 339

410 561

750 2760

910 2763

1200 2809

1310 3697

1500 4022

1740 4677

1960 6147

2210 6535

𝑦𝑥 ො𝑦 = −426.831 + 3.139𝑥

Estimated
price

514.9

860.2

1927.4

2429.7

3340.0

3685.3

4281.7

5035.0

5725.6

6510.4

Carats times 1000

1000

6000

2250250

Residuals
𝑦 − ො𝑦

-175.9

-299.2

832.6

333.3

-531.0

11.7

-259.7

-358.0

421.4

24.6
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Simple linear regression 9

• When determining the course of a simple regression 
line, we minimize the residual sum of squares (RSS).

• Residuals (black lines on the graph) are the differences 
between the actual value (𝑦𝑖) and the value predicted by 
the model ( ො𝑦𝑖).

• RSS acts as a cost function: 𝑅𝑆𝑆 =෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2

T h e  a i m o f  t h e  r e g r e s s i o n t a s k

Actual
price (𝑦𝑖)

Price estimated by 
the model ( ො𝑦𝑖)

Residue 𝑦𝑖 − ො𝑦𝑖Carats times 1000

1000

6000

2250250
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Simple linear regression

House 
area (𝑥)

House 
price (𝑦)

300 499999

200 400000

100 310000

150 367999

One input and one output variable; the 
relationship between variables should

be approximately linear

House area

H
o

u
s
e
 p

ri
ce

Multiple regression

More than one input variable and one output 
variable; the relationship between input and 
output variables should be approximately 

linear

House 
area (𝑥𝟏)

Plot 
area (𝑥2)

House 
price (𝑦)

300 45 499999

200 30 400000

100 15.5 310000

150 9.8 367999
House area

H
o

u
s
e
 p

ri
ce

ො𝑦 = 𝑎0 + 𝑎1𝑥 ො𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2
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Polynomial regression

At least one input variable is nonlinearly 
correlated with the output variable

Work
experience

(𝑥1)

Work
experience^2 

(𝑥1
𝟐)

Salary
(𝑦)

1 1 3000

2 4 3100

4 16 3400

6 36 3900

Work experience

S
a
la

ry

ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2

• Polynomial regression is a special 
case of linear regression with 
transformations;

• Polynomial regression is linear 
regression in the transformed feature 
space. However, in the original feature 
space, the relationship between the 
input variables and the output 𝑦 is 
nonlinear.
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P o l y n o m i a l r e g r e s s i o n

• It is used when a given input variable is nonlinearly 
correlated with the output variable.

• Steps in polynomial regression:

• We transform the input data, extending it with 
additional features: 𝑥, 𝑥2, 𝑥3, …, 𝑥𝑑;

• Then we apply classical linear regression on 
this transformed data; in this way, the linear 
model maps the nonlinear dependencies 
between the input and the output.

• The model becomes a linear combination of the 
input variables and their transformations; the 
transformations in this case are the result of 
exponentiating the values of the original input 
variables.

Fitting a linear model

Fitting a polynomial model

Input variable

Input variable
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Types of linear regression 13

P o l y n o m i a l r e g r e s s i o n

• If the data has a simple, nonlinear relationship between input 
and output (e.g. parabolic), then a low degree (2 or 3) may be 
sufficient.

• For more complex relationships, higher degrees can be 
considered, but with caution to avoid overfitting.

• A degree that is too low = underfitting the model.
A degree that is too high = overfitting the model.

• To choose the right polynomial degree:

• Use different polynomial degrees starting with low ones;

• Each time, test the model on a test set or using cross-
validation, paying attention to metrics (e.g. mean squared
error, R-squared);

• Choose the lowest degree possible, but that still provides 
sufficient model accuracy.

ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2

ො𝑦

𝑥

ො𝑦

𝑥

ො𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4

To what extent should a feature be expanded?



Regularization in regression 14

A n  e x a m p l e  o f  r e g u l a r i z a t i o n  i n  l i n e a r  r e g r e s s i o n

ො𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2

ො𝑦

𝑥

ො𝑦

𝑥

ො𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4

Regression without 
regularization (overfitting the 

model to the training data)

Regression with regularization 
(proper model fit, redundant 

features removed)

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4



Regularization in regression 15

C o m p a r i s o n o f  r e g u l a r i z a t i o n a p p r o a c h e s

Regularization involves adding a component to the loss function that acts as a 
penalty for fitting the model too closely to the training data (overfitting).

Ridge regression
Lasso (Least Absolute Shrinkage 

and Selection Operator)
Elastic Net

Type of 
regularization

Adds a penalty for the sum of 
squared coefficients (𝐿2)

Adds a penalty for the sum of 
the absolute values of the 

coefficients (𝐿1)
Combination of 𝐿1 and 𝐿2

Impact on 
regression

model 
coefficients

Reduces the values of the 
coefficients, but does not reset 

them, so no feature will be 
eliminated

Can reset coefficients to zero; 
features with zero coefficients 
are eliminated from the model 

(feature selection)

Reduces coefficients and 
can assign them a value 

of zero

Usefulness

When all features are somewhat 
important for predicting the 

output variable; a good choice to 
start with

Large number of features; 
sparse data; suspicion of non-

significant features

Controlling the balance 
between eliminating 

features and reducing 
their impact



Regularization in regression 16

T i p s

All types:

• When 𝜆 = 0, we get an ordinary linear regression model;

• The optimal value of 𝜆 is selected using cross-validation.

Ridge:

• When λ is very large, the model coefficients approach zero and the regression 
line runs along the mean of the data set (underfitted model);

• The model coefficients do not reach zero, but they can have values close to zero, 
which may be enough to avoid overfitting the model.

LASSO:

• When λ is very large, the least significant coefficients of the model approach 
zero;

• Can be used to select the most important features (irrelevant features will 
receive a coefficient value of zero).

Elastic Net:

• The parameter 𝑟 is the proportion between the two types of regression:

• When 𝑟 = 0, the elastic net method is equivalent to ridge regression;

• When 𝑟 = 1, the elastic net method behaves like the LASSO method.

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4

The 𝜆 parameter controls the regularization strength
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𝑦

N
u

m
b

e
r 

o
f 

p
o

in
ts

 
o

n
 t

h
e
 t

e
s
t

𝑥
Number of hours of study

Using linear regression, we can 
determine the relationship between 
input variables and the output variable 
(in the example: the relationship 
between the number of hours of 
studying and the number of points 
scored on a test).

Linear regression
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Linear regression will allow you to determine the expected number of points 
for a given number of hours of study, but it will not estimate the probability of 

passing or failing a test – we will use logistic regression for that.

Linear regression

Function
𝜎 𝑝
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𝑥
Number of hours of study

1

0

Logistic regression



𝑝
𝑦

Linear regression vs. Logistic regression 19

Linear regression model:

ℎ 𝒙; 𝒂, 𝑎0 : = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑚𝑥𝑚

Logistic regression model:

ℎ 𝒙; 𝒂, 𝑎0 : = 𝜎 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑚𝑥𝑚

• In logistic regression, we introduce the function 𝜎;

• The function 𝜎 should be selected so that it returns results 
from the range 0 to 1, which we will interpret as the probability 
of the object described by features 𝑥1, 𝑥2, … , 𝑥𝑚 belonging to 
one of the classes (the so-called positive class).

G e n e r a l  c a s e

1

0

𝑝 = 𝜎(𝑎0 + 𝑎1𝑥)

𝑦 = 𝑎0 + 𝑎1𝑥

𝑥

?
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• The function 𝜎 is a logistic function:

• Essential properties of the logistic function:

• Horizontal asymptote at height 0,

• Horizontal asymptote at height 1,

• 𝜎 0 = 0,5.

• Therefore, the logistic regression model has the form:

𝜎 𝑧 =
1

1 + 𝑒−𝑧

ℎ 𝒙; 𝒂, 𝑎0 : =
1

1 + 𝑒− 𝑎0+𝑎1𝑥1+⋯+𝑎𝑚𝑥𝑚

0

0,5

1

𝑧

𝜎 𝑧

0−∞ +∞

L o g i s t i c f u n c t i o n



[ 2 ; B ; 3.4 ]

[ β ]

[ 3 ; B ; 3.2 ]

[ α ]

Classification 21

In1 In2 In3 Out

5 A 1.5 α

3 B 3.2 α

2 B 3.4 β

… … … …

An object

Input 
variables

An output
variable

Classification model training

Classification
model

C h a r a c t e r i s t i c s

Using the model
to predict output values for new objects

[ 4 ; A ; 1.4 ]

[ ??? ]

• One of the machine learning methods
(supervised learning);

• It requires data on certain objects (e.g. physical, 
abstract objects, events, states);

• The output value of each object is of qualitative 
type.

[ 5 ; A ; 1.5 ]

[ α ]
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R e s u l t s w e  c a n g e t

Classification techniques can generate 
two types of results:

[ 4 ; A ; 1.4 ]

[ α ]

[ 4 ; A ; 1.4 ]

[ α: 0.65 ; β: 0.35 ]

In the case of probability outputs, an appropriate threshold 
should be established for each class, above which objects 

will be assigned to a given class.

Class
Probability of belonging 

to each class

Classification
model

Using the model
to predict output values for new objects

[ 4 ; A ; 1.4 ]

[ ??? ]



Positive and negative class 23

• In other words, the distinguished class, marked 
with the number 1;

• A class that is particularly interesting from the 
point of view of the prediction task and the 
research being conducted;

• It expresses the presence of certain specific 
conditions that we are trying to identify during the 
study;

• It designates a group of objects that are affected 
by the phenomenon being sought or that have 
specific features sought during the research.

• In other words, the normal class, marked with 
the number 0;

• A class in which the phenomenon being 
sought does not occur, and conditions 
important from the point of view of the 
research being conducted do not occur;

• Complementary to the positive class;

• Denotes a group of objects that do not belong 
to the positive class.

Positive class Negative class

C h a r a c t e r i s t i c s

+

[ α ]

-

[ β ] -

[ β ]

-

[ β ]

-

[ β ]
+

[ α ]
+

[ α ]

+

[ α ]
+

[ α ]

-

[ β ]

-

[ β ]



Positive and negative class 24

spam non-spam

A model for predicting machine failure failure non-failure

A model to predict which customer will switch to a competitor churn non-churn

A model for recognizing suspicious transactions in bank accounts

A model for recognizing photos with a cat

A model for predicting which customer will default on a loan

Positive
class

Negative
class

A model for recognizing unwanted emails

fraud non-fraud

default non-default

cat not a cat

E x a m p l e s



Logistic regression 25

• One of the basic machine learning techniques for 
classification (despite the fact that the name 
suggests that the technique is used in the 
regression problem, i.e. to predict the value of a 
continuous variable).

• It assigns a probability of belonging to a positive 
class to each object.

• The boundary of the division of objects into classes 
is a straight line (in the case of two dimensions) or a 
hyperplane (in the case of >2 dimensions), so it 
works well for problems in which the classes are 
linearly separable.

Feature 𝑥1

F
e
a
tu

re
𝑥
2

C h a r a c t e r i s t i c s
[𝑥1 ; 𝑥2]

[ 1 ]

[𝑥1 ; 𝑥2]

[ 0 ]

An object

Input variables

An output variable



Logistic regression 26

• In the case of two-class problems, the probability of 
belonging to the negative class = 1 – the probability of 
belonging to the positive class.

• The probability of belonging to classes can be 
converted to classes after setting a partition 
threshold, which is usually 0.5. Objects with a 
probability higher than the threshold are assigned to 
the positive class (1), and the remaining objects – to 
the negative class (0).

• The closer the object is to the class boundary, the 
greater the uncertainty of the classification result.

• The values of the input variables (features describing 
the objects) should be of quantitative type. If they 
have a qualitative type, the type of the input variables 
should be converted.

Feature 𝑥1

F
e
a
tu

re
𝑥
2

1

0

P(   ∈1) = 0,19

P(   ∈0) = 0,81
Class 0

C h a r a c t e r i s t i c s



K-nearest neighbors 27

C h a r a c t e r i s t i c s

• It is a data-driven technique, which means that it 
does not create a model that describes the 
relationship between the input variables and the 
output variable (it does not create a discriminant 
function);

• It is a so-called lazy learning technique, because it 
does not create and train a model;

• The training data set serves as a "memory" based 
on which new objects are classified;

• It requires that all features of objects (variables) 
have quantitative values (qualitative features must 
be transformed).

>



K-nearest neighbors 28

A n e x a m p l e

For an object that we want to classify, we 
need to:

1. Calculate the distances between this 
object and every other object in the 
data set;

2. Find the k objects that are closest to 
the object being classified;

3. Assign to the object being classified the 
class that occurs most frequently 
among the k closest objects.

Feature 𝑥1
F

e
a
tu

re
 𝑥
2

Class A
Class B

k = 5
Classification result = Class A
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H o w  t o  m e a s u r e  t h e  d i s s i m i l a r i t y  o f  o b j e c t s ?

• The dissimilarity of objects is expressed by a measure of the 
distance between objects in the m-dimensional feature space;

• Euclidean distance measure:

• There are other distance measures (e.g., Manhattan, 
Minkowski, Mahalanobis, Chebyshev), but the Euclidean 
distance is most often used in the k-nearest neighbors 
method. Feature 𝑥1

F
e
a
tu

re
 𝑥
2

2 7

3

6
A

B

𝑑 𝐴, 𝐵 = 2 − 7 2 + 3 − 6 2 = 34 ≈ 5,83

𝑑 𝐴, 𝐵 = 𝑥1𝐴 − 𝑥1𝐵
2
+⋯+ 𝑥𝑚𝐴

− 𝑥𝑚𝐵

2
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S e l e c t i o n o f  k

• There is no universal way to select k that 

will work in every data set – the selection 

of k depends on the characteristics of the 

data.

• Selecting different values of k and 

checking the quality of the obtained 

classification results on test data or using 

cross-validation can help determine the 

best value of k.

Low k value High k value

Well-structured
data

Poorly visible class 
structure (blurred 

boundaries between 
classes)

Low data noise High data noise



k = 5
Regression result = (3+3+2+1+1)/5 = 2

K-nearest neighbors 31

A p p l i c a t i o n  i n  r e g r e s s i o n

The k-nearest neighbors technique can also be 
used when predicting quantitative values.

For an object for which we want to predict a 
numerical value, we should:

1. Calculate the distances between this object 
and every other object in the data set;

2. Find the k objects that are closest to this 
object;

3. The result of the regression will be the 
average value of the output variable of all k 
nearest neighbors of this object.

Feature 𝑥1
F

e
a
tu

re
 𝑥
2

A
n

o
u

tp
u

t
va

ri
a
b

le

3

1

1

2
3

2

3

4

1
0

0

0

2 3

1

4

5
5

6
6

7

7

8

8
4

5

2

2 1

4
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C r e a t i n g a  d e c i s i o n n o d e

age income
club 

membe
rship

class

25 40 1 A
30 50 0 A
45 80 1 B
22 35 1 B
36 70 0 B
50 100 0 B
28 42 1 A
33 55 0 A
48 85 1 B
21 30 1 A
39 75 0 B
41 90 0 A
26 45 1 A
35 60 1 B
47 96 0 B

Goal: to determine the node that best divides the data set into subsets –
the best division means that the subsets will be as pure as possible 
(homogeneous in terms of classes).

STEP 1: calculate the impurity measure of the data set – the Gini index 
is most often used (the lower the index value, the lower the impurity):

where 𝑝𝑖 is the percentage of objects belonging to class 𝑖 in the data set.

𝐺𝑖𝑛𝑖 = 1 −෍

𝑖=1

𝐾

𝑝𝑖
2

𝐺𝑖𝑛𝑖 = 1 −
7

15

2

−
8

15

2

≈ 0,498

Percentage of class : A           B

Data on bank customers
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C r e a t i n g a  d e c i s i o n n o d e

STEP 2: testing possible splits – for each input 
variable we test all possible split points. We 
will choose the split that minimizes the Gini 
index value.

𝐺𝑖𝑛𝑖 = 1 −
6

7

2

−
1

7

2

≈ 0,245Left branch:

An example of division

age <= 34

age income
club 

membe
rship

class

25 40 1 A
30 50 0 A
22 35 1 B
28 42 1 A
33 55 0 A
21 30 1 A
26 45 1 A

age income
club 

membe
rship

class

45 80 1 B
36 70 0 B
50 100 0 B
48 85 1 B
39 75 0 B
41 90 0 A
35 60 1 B
47 96 0 B

𝐺𝑖𝑛𝑖 = 1 −
1

8

2

−
7

8

2

≈ 0,219Right branch:
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C r e a t i n g a  d e c i s i o n n o d e

STEP 3: Choosing the best partition. We choose the split that 
gives the smallest 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 value. This will give us the purest 

subsets in both branches.

We perform all 3 steps of the procedure on the 
two obtained subsets (left and right branches).

The tree construction will stop when all nodes 
are clean (leaf) or when stopping conditions 
are reached.

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 =
7

15
∙ 0,245 +

8

15
∙ 0,219 ≈ 0,231

An example of division

age <= 34

age income
club 

membe
rship

class

25 40 1 A
30 50 0 A
22 35 1 B
28 42 1 A
33 55 0 A
21 30 1 A
26 45 1 A

age income
club 

membe
rship

class

45 80 1 B
36 70 0 B
50 100 0 B
48 85 1 B
39 75 0 B
41 90 0 A
35 60 1 B
47 96 0 B
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C l a s s i f i c a t i o n t r e e o v e r f i t t i n g

• The algorithm that builds a decision tree is 

a greedy algorithm – an algorithm set with 

default hyperparameters will run until it 

creates a tree that is maximally adapted to 

the training data (it assigns all objects to 

maximally pure leaves).

• As a result, the classification tree also 

adapts to the noise in the data, which can 

be observed in the form of “corridors” on 

the graph showing the boundaries 

established by the classification tree.

Class 0 “corridor”
inside the class 1

area

Class 1 “corridor”
inside the class 0 

area

Data noise that 
created a 
“corridor”
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C l a s s i f i c a t i o n t r e e o v e r f i t t i n g

Leaf containing 
noise in the data

1
1

2

23

3

4

4

Data noise that 
created a 
“corridor”
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C l a s s i f i c a t i o n t r e e r e g u l a r i z a t i o n

The solution to the problem of overfitting a tree can be appropriate tree regularization (pruning), 
using appropriate hyperparameter values.
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R e g u l a r i z a t i o n d u r i n g t r e e c r e a t i o n

Hyperparameters used to limit tree growth during tree creation (names taken from the 
DecisionTreeClassfier – Python sklearn.tree library):

• max_depth - maximum depth (height) of the tree;

• min_samples_split - minimum number of objects that must be in a decision node so that it 
can be split into lower-level nodes;

• min_samples_leaf - minimum number of objects that must be in each leaf;

• min_weight_fraction_leaf - as in min_samples_leaf, but here the fraction of the total number 
of samples is taken into account;

• max_leaf_nodes - maximum number of leaves.

The size of the tree can also be indirectly influenced by the max_features hyperparameter, 
which specifies the number of features (input variables) taken into account when creating 
each decision node.
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• Grid Search Cross Validation allows us to use cross validation to search for the best combination of 
hyperparameters for a machine learning model.

• With a large number of parameters and their values, it is necessary to create and test a great many 
models, which is time-consuming and may require high computing power. In such situations, random 
search of parameter combinations (Random Search Cross Validation) is often used.

Grid Search

Hyperparameter no. 1

H
yp

e
rp

a
ra

m
e
te

r
n

o
. 2

1    2    3    4    5    6    7   8    9    10

1 
  

 2
  

  
3
  

  
4

  
 5

A better model

A worse model

Random Search

Hyperparameter no. 1

H
yp

e
rp

a
ra

m
e
te

r
n

o
. 2

1    2    3    4    5    6    7   8    9    10

1 
  

 2
  

  
3
  

  
4

  
 5

S e l e c t i o n o f  h y p e r p a r a m e t e r s



age income
club 

membe
rship

deposit
amount

25 40 1 150
30 50 0 140
45 80 1 210
22 35 1 80
36 70 0 190
50 100 0 210
28 42 1 100
33 55 0 160
48 85 1 200
21 30 1 30
39 75 0 160
41 90 0 180
26 45 1 90
35 60 1 170
47 96 0 180

Regression tree 40

C r e a t i n g a  d e c i s i o n n o d e

Goal: to determine the node that best divides the data set into subsets –
the best partition means that the subsets will best reduce the mean 
squared error of prediction.

STEP 1: Calculate the Mean Square Error (MSE) of the parent node:

where: 𝑦𝑖 is the value of the output variable of a given object, and
ො𝑦 is the prediction result treated as the average value of the output 
variable of all objects.

𝑀𝑆𝐸 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − ො𝑦 2

𝑀𝑆𝐸 =
1

15
෍

𝑖=1

15

𝑦𝑖 − 150 2 = 2613.33

Data on bank customers
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C r e a t i n g a  d e c i s i o n n o d e

STEP 2: testing possible splits – for each input 
variable we test all possible split points. Each 
split gives two branches, and for each of them 
we calculate MSE.

Left branch:

An example of division

income <= 47.5

Right branch:

age income
club 

membe
rship

deposit
amount

25 40 1 150
22 35 1 80
28 42 1 100
21 30 1 30
26 45 1 90

age income
club 

membe
rship

deposit
amount

30 50 0 140
45 80 1 210
36 70 0 190
50 100 0 210
33 55 0 160
48 85 1 200
39 75 0 160
41 90 0 180
35 60 1 170
47 96 0 180

𝑀𝑆𝐸 =
1

5
෍

𝑖=1

5

𝑦𝑖 − 90 2 = 1480

𝑀𝑆𝐸 =
1

10
෍

𝑖=1

10

𝑦𝑖 − 180 2 = 480
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C r e a t i n g a  d e c i s i o n n o d e

STEP 3: Choosing the best partition. We choose the partition that best reduces MSE :

We perform all 3 steps of the procedure on the two obtained subsets 
(left and right branches).

The tree construction will end when all nodes have the minimum achievable MSE
value or when stopping conditions are reached.

𝑀𝑆𝐸 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑆𝐸𝑃 −
𝑛𝐿
𝑛𝑃

∙ 𝑀𝑆𝐸𝐿 +
𝑛𝑅
𝑛𝑃

∙ 𝑀𝑆𝐸𝑅

where: 𝑃 denotes the parent node, L – the left node, 
R – the right node.

𝑀𝑆𝐸 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 2613.33 −
5

15
∙ 1480 +

10

15
∙ 480 ≈

≈ 1800
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R e g r e s s i o n t r e e o v e r f i t t i n g

• The algorithm that builds a decision tree is a 

greedy algorithm – an algorithm set with 

default hyperparameters will run until it 

creates a tree that is maximally fitted to the 

training data (assigns all objects to leaves 

with the minimum MSE value).

• As a result, the regression tree adapts to 

every object in the training data set (also to 

the noise in the data).

• Large fluctuations in the regression line 

suggest that the model is over-fitted to the 

data.

Regression result using a tree maximally fitted to the 
training data (61 leaves)

train
test
regression line



R e g r e s s i o n t r e e r e g u l a r i z a t i o n

Regression tree 44

• Regularizing a tree, which involves pruning 

it (reducing the number of decision nodes 

and leaves), will reduce the fit to the training 

data, but may make it easier to find a 

relationship between the output variable and 

the input variable (or input variables).

• This may result in improved prediction 

quality on the test set.

• The hyperparameters used to regularize a 

regression tree are the same as those used 

for a classification tree.

Regression result using a regularized tree (13 leaves)

train
test
regression line
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C h a r a c t e r i s t i c s

• Random forest is an ensemble model 
based on many simple (non-extensive) 
decision trees.

• The key hyperparameter is the number 
of trees in the model (n_estimators) –
the more trees, the greater the stability 
of the prediction results, but the longer 
the computation time.

• In regression, the prediction result of 
the random forest model is the average 
of the prediction results of all trees 
included in the forest.

Random forest regression result
(100 trees with maximum depth of 2)

train
test
regression line
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B o o t s t r a p A g g r e g a t i n g ( b a g g i n g )

Bagging is a technique for creating ensemble models that 
consists of two stages:

• Stage 1: random subsets of data are created (bootstrap 
samples) and a different model (decision tree) is 
trained on each of them.

• Stage 2: combining the prediction results of the 
individual models in the ensemble.

In random forests, the bagging procedure is 
additionally enriched with a random selection of 

features as in the case of the max_features
hyperparameter.

Advantages of bagging in random forests:

• Variance reduction: individual trees can 
have high variance; the forest, by combining 
the prediction results of individual trees, 
eliminates random errors resulting from 
differences in training samples.

• Overfitting reduction: trees that create the 
forest are trained on random subsets, which 
reduces the risk of the random forest fitting 
to noise in the data.



No. 𝑥1 𝑥2 𝑥3 𝑦

1

2

3

4

5

6

Random forest 47

B o o t s t r a p A g g r e g a t i n g ( b a g g i n g ) :  s t a g e 1

• Creating random training sets 
(as many sets as there are trees 
in the random forest);

• Each set is drawn with 
replacement;

• The size of each random set is 
equal to the size of the base
training data set;

• A different decision tree is 
trained on each random set.

An example for 
n_estimators = 3Bootstrap stage

Base training
data set

lp 𝑥1 𝑥2 𝑥3 𝑦

6

1

5

2

5

6

lp 𝑥1 𝑥2 𝑥3 𝑦

1

2

3

1

4

5

lp 𝑥1 𝑥2 𝑥3 𝑦

5

2

1

3

5

4

Bootstrap
sampling

Training 
decision
trees



No. 𝑥1 𝑥2 𝑥3 𝑦

1

2

3

4

5

6

Random forest 48

B o o t s t r a p A g g r e g a t i n g ( b a g g i n g ) :  s t a g e 2

• Trained models calculate a 
prediction for each object in the 
data set;

• Calculating the prediction for a 
given object:

• In regression: the average 
of the predictions of all 
models.

• In classification: majority 
voting – each model 
predicts the class of a given 
object, and the majority 
class is selected as the final 
prediction.

An example for 
n_estimators = 3Aggregating stage

Base training
data set

Prediction 
result for the 
first object

Data on the first 
object

14

7

9

10
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Thank you for your attention!


