Logic systems

Primož Podržaj

Lecture 02

Comparison between crisp and fuzzy set

Characteristic function of a fuzzy set

• $\mu_A : X \rightarrow [0, 1]$

Some researchers

- Lotfi Aliasker Zadeh
- Ebrahim (Abe) H. Mamdani
- Michio Sugeno

Typical examples of fuzzy sets

Union of two fuzzy sets

- \bullet C = A U B
- $\mu_{C}(x) = \max [\mu_{A}(x), \mu_{B}(x)]$
- T-norms

Intersection of two fuzzy sets

- \bullet C = A \cap B
- $\mu_{C}(x) = \min [\mu_{A}(x), \mu_{B}(x)]$
- S-norms (T-co-norms)

Complement

- Relative complement of the fuzzy set A in relation to the fuzzy set B
- \cdot E=B-A
- $\mu_E(x) = \max [0, \mu_B(x) \mu_A(x)]$
- In case the set B is the universal set X, we get: $\mu_{\bar{A}}(x) = 1 \mu_A(x)$

Fuzzy relations

- Crisp relations
- R \subset X \times Y = {(x, y) | $x \in$ X, $y \in$ Y }
- $\mu_R : X \times Y \rightarrow \{0, 1\}$
- Fuzzy relations:
- $\mu_R : X \times Y \rightarrow [0, 1]$
- Let C=A×B then: $\mu_C(x, y) = min(\mu_A(x), \mu_B(y))$

Cartesian product on fuzzy sets

Fuzzy relations as subsets (graphically)

Composition of relations

• Let C and D be two fuzzy relations, which are subsets of X \times Y and Y \times Z, respectively. If E is composed of these two relations, that is $E=C \circ D$, then:

$$
\mu_E(x, z) = \max_{y=Y} (\min(\mu_C(x, y), \mu_D(y, z))
$$

Composition of relations (graphically)

Special case

• Special case is a case when one of the relations is substituted with a fuzzy set. Let's say that we have a fuzzy set A⊂X and fuzzy relation C ⊂ X × Y. Their composition is then

$$
\mu_B(y) = \max_{x=X} (\min(\mu_A(x), \mu_C(x, y)))
$$

Special case graphically

Fuzzy propositions

- Conjunction: $p \wedge q \Rightarrow P \cap Q$
- Disjunction: $p \lor q \Rightarrow P \cup Q$
- Negation: $\neg p \Rightarrow \overline{P}$
- Implication: $p \Rightarrow q \Rightarrow \overline{P} \cup Q$

Modus ponens

- $p \wedge (p \Rightarrow q) \Rightarrow q$
- Truth (logical) table

Fuzzy control

Extension of modus ponens

- What to do if water level is high?
- Close the valve slightly
- How can we denote that in logical notation?
- $p' \land (p \Rightarrow q) \Rightarrow q'$
- How can we write that using sets?
- $Q' = P' \cap (\overline{P} \cup Q)$

Problem and solution

- \overline{P} U Q doesn't make sense
- P ∩ Q should be used (Mamdani)

Final rule deduction

- Rule: $\mu_{Q'}(y) = \max_{x \in X} (\min(\mu_{P'}(x), \mu_{P \cap Q}(x, y))) = \max_{x \in X} (\min(\mu_{P'}(x), \mu_{P}(x), \mu_{Q}(y)))$
- We use equality: $\min(\mu_{P'}(x), \mu_P(x), \mu_Q(y)) = \min\left(\min_{x \in X} (\mu_{P'}(x), \mu_P(x)), \mu_Q(y)\right)$
- And finally get: $\mu_{Q'}(y) = \max_{x \in X} (\min(\mu_{P' \cap P}(x), \mu_Q(y)))$

Final rule graphically

Defuzzification

• Q' is not an appropriate output of a controller

• Center of gravity:
$$
T = \frac{\int_Y \mu_{Q'}(y) \cdot y \, dy}{\int_Y \mu_{Q'}(y) \, dy}
$$

Input signal as a number

- The input signal to a controller is typically also an error signal (single value)
- The associated fuzzy set can be defined as: $\mu_{P'}(x) = \begin{cases} 1; & x = x_0 \\ 0; & x \neq x_0 \end{cases}$

A more realistic example

- A rule that makes more sense: "If the water level is high and increasing then open the valve"
- So we get a set of rules:

Result (graphically)

Why to use fuzzy logic

- Since the control strategy consists of if-then rules, it is easy for a process operator to read. The rules can be built from a vocabulary containing everyday words such as 'high', 'low', and 'increasing'. Process operators can embed their experience directly.
- The fuzzy controller can accommodate many inputs and many outputs. Variables can be combined in an if–then rule with the connectives "and" and "or". Rules are executed in parallel, implying a recommended action from each. The recommendations may be in conflict, but the controller resolves conflicts.

Why not to use fuzzy logic

- The PID controller is well understood, easy to implement both in its digital and analogue forms – and it is widely used. By contrast, the fuzzy controller requires some knowledge of fuzzy logic. It also involves building arbitrary membership functions.
- The fuzzy controller is generally nonlinear. It does not have a simple equation like the PID, and it is more difficult to analyse mathematically; approximations are required, and it follows that stability is more difficult to guarantee.
- The fuzzy controller has more tuning parameters than the PID controller. Furthermore, it is difficult to trace the data flow during execution, which makes error correction more difficult.

Precision and significance in the real world

Summary

• Lofti Zadeh quote: "In almost every case you can build the same product without fuzzy logic, but fuzzy is faster and cheaper."

Nonlinear control (fuzzy logic)

- The egg white must coagulate
- The egg yolk should not coagualte
- The eggs should be pasteurized

System output (water temperature) requirements

System setup

Actuator problem

Fuzzy sets

Fuzzy rules

Control rules

Results

Development system and final product

