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Propositions 1

A proposition is a declarative sentence (that is, a sentence that 
declares a fact) that is either true or false, but not both.

• Washington, D.C., is the capital of the United States of America.

• Toronto is the capital of Canada.

• 1 + 1 = 2.

• 2 + 2 = 3.



Propositions 2

Some sentences that are not propositions:

• What time is it?

• Read this carefully!

• x + 1 = 2.

• x + y = z.



Propositions 3

• We use letters to denote propositional variables (or sentential 
variables), that is, variables that represent propositions, just as letters 
are used to denote numerical variables. The conventional letters used 
for propositional variables are p, q, r, s ...

• The truth value of a proposition is true, denoted by T, if it is a true 
proposition, and the truth value of a proposition is false, denoted by 
F, if it is a false proposition. Propositions that cannot be expressed in 
terms of simpler propositions are called atomic propositions.



Propositional calculus

• The area of logic that deals with propositions is called the 
propositional calculus or propositional logic. It was first developed 
systematically by the Greek philosopher Aristotle more than 2300 
years ago.

• Many mathematical statements are constructed by combining one or 
more propositions. New propositions, called compound propositions, 
are formed from existing propositions using logical operators.



Negation 

• Let p be a proposition. The negation of p, denoted by ¬p, is the 
statement “It is not the case that p.” The proposition ¬p is read “not 
p.” The truth value of the negation of p, ¬p, is the opposite of the 
truth value of p.

• Table displays the truth table for the negation of a proposition p.



Negation - example

• Task: Find the negation of the proposition “Vandana’s smartphone 
has at least 32 GB of memory” and express this in simple English.

• Solution: The negation is “It is not the case that Vandana’s
smartphone has at least 32 GB of memory.” This negation can also be 
expressed as “Vandana’s smartphone does not have at least 32 GB of 
memory” or even more simply as “Vandana’s smartphone has less 
than 32 GB of memory.”



Negation - conclusion

The negation of a proposition can also be considered the result of the 
operation of the negation operator on a proposition. The negation 
operator constructs a new proposition from a single existing 
proposition. We will now introduce the logical operators that are used 
to form new propositions from two or more existing propositions. 
These logical operators are also called connectives.



Conjunction

• Let p and q be propositions. The conjunction of p and q, denoted by p ∧ q, 
is the proposition “p and q.” The conjunction p ∧ q is true when both p 
and q are true and is false otherwise.

• The truth table



Conjunction example

• Task: Find the conjunction of the propositions p and q where p is the 
proposition “Rebecca’s PC has more than 16 GB free hard disk space” 
and q is the proposition “The processor in Rebecca’s PC runs faster 
than 1 GHz.”

• Solution: The conjunction of these propositions, p ∧ q, is the 
proposition “Rebecca’s PC has more than 16 GB free hard disk space, 
and the processor in Rebecca’s PC runs faster than 1 GHz.” This 
conjunction can be expressed more simply as “Rebecca’s PC has more 
than 16 GB free hard disk space, and its processor runs faster than 1 
GHz.” For this conjunction to be true, both conditions given must be 
true. It is false when one or both of these conditions are false.



Disjunction

• Let p and q be propositions. The disjunction of p and q, denoted by p ∨ q, is 
the proposition “p or q.” The disjunction p ∨ q is false when both p and q are 
false and is true otherwise.

• The use of the connective or in a disjunction corresponds to one of the two 
ways the word or is used in English, namely, as an inclusive or. A disjunction 
is true when at least one of the two propositions is true. That is, p ∨ q is true 
when both p and q are true or when exactly one of p and q is true.

• The truth table



Exclusive or

Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q 
(or p XOR q), is the proposition that is true when exactly one of p and q is 
true and is false otherwise.



Example

• Let p and q be the propositions that state “A student can have a salad 
with dinner” and “A student can have soup with dinner,” respectively. 
What is p ⊕ q, the exclusive or of p and q?

• The exclusive or of p and q is the statement that is true when exactly 
one of p and q is true. That is, p ⊕ q is the statement “A student can 
have soup or salad, but not both, with dinner.” Note that this is often 
stated as “A student can have soup or a salad with dinner,” without 
explicitly stating that taking both is not permitted.



Conditional statements

• Let p and q be propositions. The conditional statement p → q is the 
proposition “if p, then q.” The conditional statement p → q is false 
when p is true and q is false, and true otherwise. In the conditional 
statement p → q, p is called the hypothesis (or antecedent or 
premise) and q is called the conclusion (or consequence).

• The statement p → q is called a conditional statement because p → q 
asserts that q is true on the condition that p holds. A conditional 
statement is also called an implication.



Implication truth table



Implication truth value explanation 1

A useful way to understand the truth value of a conditional statement 
is to think of an obligation or a contract. For example, the pledge many 
politicians make when running for office is “If I am elected, then I will 
lower taxes.” If the politician is elected, voters would expect this 
politician to lower taxes. Furthermore, if the politician is not elected, 
then voters will not have any expectation that this person will lower
taxes, although the person may have sufficient influence to cause those 
in power to lower taxes. It is only when the politician is elected but 
does not lower taxes that voters can say that the politician has broken 
the campaign pledge. This last scenario corresponds to the case when p 
is true but q is false in p → q.



Implication truth value explanation 2

Similarly, consider a statement that a professor might make: “If you get 
100% on the final, then you will get an A.” If you manage to get 100% 
on the final, then you would expect to receive an A. If you do not get 
100%, you may or may not receive an A depending on other factors.
However, if you do get 100%, but the professor does not give you an A, 
you will feel cheated.



Note

• Most programming languages contain statements such as if p then S, 
where p is a proposition and S is a program segment (one or more 
statements to be executed). (Although this looks as if it might be a 
conditional statement, S is not a proposition, but rather is a set of 
executable instructions.) When execution of a program encounters 
such a statement, S is executed if p is true, but S is not executed if p is 
false.



Converse, contrapositive, and inverse

We can form some new conditional statements starting with a 
conditional statement p → q. In particular, there are three related 
conditional statements that occur so often that they have special 
names. The proposition q → p is called the converse of p → q. The 
contrapositive of p → q is the proposition ¬q → ¬p. The proposition ¬p 
→ ¬q is called the inverse of p → q. We will see that of these three 
conditional statements formed from p → q, only the contrapositive 
always has the same truth value as p → q.



Converse, contrapositive, and inverse



Example

• Find the contrapositive, the converse, and the inverse of the 
conditional statement “The home team wins whenever it is raining.”

• Because “q whenever p” is one of the ways to express the conditional 
statement p → q, the original statement can be rewritten as “If it is 
raining, then the home team wins.” Consequently, the contrapositive 
of this conditional statement is “If the home team does not win, then 
it is not raining.” The converse is “If the home team wins, then it is 
raining.” The inverse is “If it is not raining, then the home team does 
not win.” Only the contrapositive is equivalent to the original 
statement.



Logical equivalence

When two compound propositions always have the same truth values, 
regardless of the truth values of its propositional variables, we call 
them equivalent. Hence, a conditional statement and its contrapositive 
are equivalent.



Compound propositions

• Construct the truth table of the compound proposition (p ∨ ¬q) → (p ∧ q).



Precedence of Logical Operators

• (p ∨ q) ∧ (¬r)

• (p ∨ q) ∧ ¬r



Logic and Bit Operations

• Computers represent information 
using bits. A bit is a symbol with 
two possible values, namely 0 
(zero) and 1 (one). This meaning 
of the word bit comes from binary 
digit, because zeros and ones are 
the digits used in binary 
representations of numbers. A 
variable is called a Boolean 
variable if its value is either true 
or false.



Table for the Bit Operators OR, AND, and XOR



Translating English Sentences 1

• How can this English sentence be translated into a logical expression?

“You can access the Internet from campus only if you are a computer 
science major or you are not a freshman.”

• We let a, c, and f represent “You can access the Internet from 
campus,” “You are a computer science major,” and “You are a 
freshman,” respectively.

• a → (c ∨ ¬f )



Translating English Sentences 2

• How can this English sentence be translated into a logical expression? 
“You cannot ride the roller coaster if you are under 4 feet tall unless 
you are older than 16 years old.”

• Let r, f, and o represent “You can ride the roller coaster,” “You are 
under 4 feet tall,” and “You are older than 16 years old,” respectively.

• (f ∧ ¬o) → ¬r



Translating English Sentences 3 - 1

• As a reward for saving his daughter from pirates, the King has given 
you the opportunity to win a treasure hidden inside one of three 
trunks. The two trunks that do not hold the treasure are empty. To 
win, you must select the correct trunk. Trunks 1 and 2 are each 
inscribed with the message “This trunk is empty,” and Trunk 3 is 
inscribed with the message “The treasure is in Trunk 2.” The Queen, 
who never lies, tells you that only one of these inscriptions is true, 
while the other two are wrong. Which trunk should you select to win?



Translating English Sentences 3 - 2

Let pi be the proposition that the treasure is in Trunk i, for i = 1, 2, 3. To 
translate into propositional logic the Queen’s statement that exactly 
one of the inscriptions is true, we observe that the inscriptions on 
Trunk 1, Trunk 2, and Trunk 3, are ¬p1, ¬p2, and p2, respectively. So, 
her statement can be translated to

(￢p1 ∧￢(￢p2) ∧￢p2) ∨ (￢(￢p1) ∧￢p2 ∧￢p2) ∨ (￢(￢p1) ∧
￢(￢p2) ∧ p2))



Logic circuits

• Determine the logic circuit for: (p∨¬r) ∧ (¬p ∨ (q∨¬r))



Propositional equivalences

• A compound proposition that is always true, no matter what the truth 
values of the propositional variables that occur in it, is called a 
tautology. A compound proposition that is always false is called a 
contradiction. A compound proposition that is neither a tautology 
nor a contradiction is called a contingency.



Logical Equivalences

• Compound propositions that have the same truth values in all 
possible cases are called logically equivalent.

• The compound propositions p and q are called logically equivalent if p 
↔ q is a tautology. The notation p ≡ q denotes that p and q are 
logically equivalent.



Example 1

• Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent

• We use the truth table



Example 2

• Show that p → q and ¬p ∨ q are logically equivalent.

• We construct the truth table



Example 3

• Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent. This 
is the distributive law of disjunction over conjunction.



Modus ponens

• (p ∧ (p → q)) → q



Predicates

• Statements involving variables, such as “x > 3,” “x = y + 3,” “x + y = z,” 
are often found in mathematical assertions.

• They are called predicates (or also open statements)

• We can denote the statement “x is greater than 3” by P(x), where P 
denotes the predicate “is greater than 3” and x is the variable.

• The statement P(x) is also said to be the value of the propositional 
function P at x.



Example

• Let P(x) denote the statement “x > 3.” What are the truth values of 
P(4) and P(2)?

• We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” 
Hence, P(4), which is the statement “4 > 3,” is true. However, P(2), 
which is the statement “2 > 3,” is false.



Quantifiers

• When the variables in a propositional function are assigned values, 
the resulting statement becomes a proposition with a certain truth 
value. However, there is another important way, called quantification, 
to create a proposition from a propositional function.

• The area of logic that deals with predicates and quantifiers is called 
the predicate calculus.



The universal quantifier

• The universal quantification of P(x) is the statement “P(x) for all 
values of x in the domain.”

• The notation ∀xP(x) denotes the universal quantification of P(x). Here 
∀ is called the universal quantifier. 

• We read ∀xP(x) as “for all xP(x)” or “for every x P(x).”



Examples

• Let P(x) be the statement “x + 1 > x.” What is the truth value of the 
quantification ∀xP(x), where the domain consists of all real numbers?

• Because P(x) is true for all real numbers x, the quantification ∀xP(x) is 
true.

• Let Q(x) be the statement “x < 2.” What is the truth value of the 
quantification ∀xQ(x), where the domain consists of all real numbers?

• Q(x) is not true for every real number x, because, for instance, Q(3) is 
false. That is, x = 3 is a counterexample for the statement ∀xQ(x). 
Thus, ∀xQ(x) is false.



Existential quantifier

• The existential quantification of P(x) is the proposition “There exists 
an element x in the domain such that P(x).”

• We use the notation ∃xP(x) for the existential quantification of P(x). 
Here ∃ is called the existential quantifier.



Examples

• Let P(x) denote the statement “x > 3.” What is the truth value of the 
quantification ∃xP(x), where the domain consists of all real numbers?

• Because “x > 3” is sometimes true (for instance, when x = 4), the 
existential quantification of P(x), which is ∃xP(x), is true.

• Let Q(x) denote the statement “x = x + 1.” What is the truth value of 
the quantification ∃xQ(x), where the domain consists of all real 
numbers?

• Because Q(x) is false for every real number x, the existential 
quantification of Q(x), which is ∃xQ(x), is false.



Negating Quantified Expressions

• ¬∀xP(x) ≡ ∃x ¬P(x)

• ¬∃xQ(x) ≡ ∀x ¬Q(x)



Example

• What are the negations of the statements “There is an honest politician” and 
“All Americans eat cheeseburgers”?

• Let H(x) denote “x is honest.” Then the statement “There is an honest 
politician” is represented by ∃xH(x), where the domain consists of all 
politicians. The negation of this statement is ¬∃xH(x), which is equivalent to 
∀x¬H(x). This negation can be expressed as “Every politician is dishonest.” 
(Note: In English, the statement “All politicians are not honest” is ambiguous. 
In common usage, this statement often means “Not all politicians are honest.” 
Consequently, we do not use this statement to express this negation.) Let C(x) 
denote “x eats cheeseburgers.” Then the statement “All Americans eat 
cheeseburgers” is represented by ∀xC(x), where the domain consists of all 
Americans. The negation of this statement is ¬∀xC(x), which is equivalent to 
∃x¬C(x). This negation can be expressed in several different ways, including 
“Some American does not eat cheeseburgers” and “There is an American who 
does not eat cheeseburgers.”



Translating from English into Logical Expressions - 1

• Express the statement “Every student in this class has studied 
calculus” using predicates and quantifiers.

• First, we rewrite the statement so that we can clearly identify the 
appropriate quantifiers to use. Doing so, we obtain: “For every 
student in this class, that student has studied calculus.” Next, we 
introduce a variable x so that our statement becomes “For every 
student x in this class, x has studied calculus.” Continuing, we 
introduce C(x), which is the statement “x has studied calculus.” 
Consequently, if the domain for x consists of the students in the class, 
we can translate our statement as ∀xC(x).



Translating from English into Logical Expressions - 2

• If we change the domain to consist of all people, we will need to 
express our statement as “For every person x, if person x is a student 
in this class, then x has studied calculus.”

• If S(x) represents the statement that person x is in this class, we see 
that our statement can be expressed as ∀x(S(x) → C(x)). [Caution! Our 
statement cannot be expressed as ∀x(S(x) ∧ C(x)) because this 
statement says that all people are students in this class and have 
studied calculus!]



Dilemma 

∀xP(x)   or  ∃x ¬P(x)



Nested quantifiers

• ∀x∀y(x + y = y + x)

• ∀x∃y(x + y = 0)

• ∀x∀y((x > 0) ∧ (y < 0) → (xy < 0))



Order of quantifiers

• ∀x∃y (y > x)

• ∃y∀x (y > x)



Example

• Limit in mathematical terms



Sets

A set is an unordered collection of distinct objects, called elements or 
members of the set. A set is said to contain its elements. We write a ∈
A to denote that a is an element of the set A. The notation a ∉ A 
denotes that a is not an element of the set A.

• Roster method: V = {a, e, i, o, u}

• Set builder notation: O = {x ∣ x is an odd positive integer less than 10}



Equality of sets

• Two sets are equal if and only if they have the same elements. 
Therefore, if A and B are sets, then A and B are equal if and only if 
∀x(x ∈ A ↔ x ∈ B). We write A = B if A and B are equal sets.

• The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same 
elements. Note that the order in which the elements of a set are 
listed does not matter. Note also that it does not matter if an element 
of a set is listed more than once, so {1, 3, 3, 3, 5, 5, 5, 5} is the same 
as the set {1, 3, 5} because they have the same elements.



Empty set

• There is a special set that has no elements. This set is called the 
empty set, or null set, and is denoted by ∅.



Subsets

• The set A is a subset of B, and B is a superset of A, if and only if every 
element of A is also an element of B. We use the notation A ⊆ B to 
indicate that A is a subset of the set B. If, instead, we want to stress 
that B is a superset of A, we use the equivalent notation B ⊇ A. (So, A 
⊆ B and B ⊇ A are equivalent statements.)

• We see that A ⊆ B if and only if the quantification ∀x(x ∈ A → x ∈ B) is 
true.



Cartesian Products

• Let A and B be sets. The Cartesian product of A and B, denoted by A ×
B, is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B. Hence, 
A × B = {(a, b) ∣ a ∈ A ∧ b ∈ B}.



Example

• What is the Cartesian product of A = {1, 2} and B = {a, b, c}?

• The Cartesian product A × B is A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), 
(2, c)}.



Relations

• Relations are subsets of cartesian products

1

2

3

a

b

c



Union of sets

• Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, 
is the set that contains those elements that are either in A or in B, or 
in both.

• A ∪ B = {x ∣ x ∈ A ∨ x ∈ B}.



Intersection of sets

• Let A and B be sets. The intersection of the sets A and B, denoted by 
A ∩ B, is the set containing those elements in both A and B.

• A ∩ B = {x ∣ x ∈ A ∧ x ∈ B}



Complement of a set

• Let U be the universal set. The complement of the set A, denoted by 
A, is the complement of A with respect to U. Therefore, the 
complement of the set A is U − A.

• A = {x ∈ U ∣ x ∉ A}



Set identities



Computer Representation of Sets

• Assume that the universal set U is finite (and of reasonable size so 
that the number of elements of U is not larger than the memory size 
of the computer being used). First, specify an arbitrary ordering of the 
elements of U, for instance a1, a2,…, an. Represent a subset A of U 
with the bit string of length n, where the i-th bit in this string is 1 if ai
belongs to A and is 0 if ai does not belong to A.



Example

• Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U 
has the elements in increasing order; that is, ai = i. What bit strings 
represent the subset of all odd integers in U, the subset of all even 
integers in U, and the subset of integers not exceeding 5 in U?

• The bit string that represents the set of odd integers in U, namely, {1, 
3, 5, 7, 9}, has a one bit in the first, third, fifth, seventh, and ninth 
positions, and a zero elsewhere. It is 10 1010 1010. Similarly, we 
represent the subset of all even integers in U, namely, {2, 4, 6, 8, 10}, 
by the string 01 0101 0101.

• The set of all integers in U that do not exceed 5, namely, {1, 2, 3, 4, 5}, 
is represented by the string 11 1110 0000.



Characteristic function

• μC : X → {0, 1}

• Characteristic function for a certain set A

• μA(x)=1   ⇒ x ∈ A 

• μA(x)=0   ⇒ x ∉ A



Example - 1

• A={2, 3, 5, 7, 8}

C

0 1 2 3 4 5 6 7 8 9 10

1



Example - 2

• A={x|2<x<5}

C

0 1 2 3 4 5 6 7 8 9 10

1



Question

• How would you define intersection, union, etc. using characteristic 
function? What would be a condition for one set being a subset of 
another set?


