Basics of Machine Vision

Primož Podržaj

Lecture 03

Image in "mathematical sense"

Image manipulation

• Point processing vs neighbourhood processing

Neighborhood processing

Filtering

Mean and median filter

• Mean

Mean value = $\frac{205 + 204 + 204 + 206 + 0 + 208 + 201 + 199 + 205}{9}$ 9 $= 181.3 \approx 181$

• Median

Ordering: [0, 199, 201, 204, 204, 205, 205, 206, 208] $Median = 204$

Result

Mean filtered

Median filtered

Border problem

• **Increase the output image**

After the output image has been generated, the pixel values in the last row (if radius $= 1$) is duplicated and appended to the image. The same for the first row, first column and last column.

• **Increase the input image**

Before the image is filtered the pixel values in the last row (if radius $= 1$) of the input image is duplicated and appended to the input image. The same for the first row, first column and last column.

• **Apply special filters at the rim of the image**

Special filters with special sizes are defined and applied accordingly

Special fileters

Kernel size 3x3

Special kernel sizes

Application

Input image

11x11 kernel

29x29 kernel

Rank filters

The Median Filter belongs to a group of filters known as Rank Filters. The only difference between them is the value which is picked after the pixels have been sorted:

• **The minimum value**

This filter will make the image darker.

• **The maximum value**

This filter will make the image brighter.

• **The difference**

This filter outputs the difference between the maximum and minimum value and the result is an image where the transitions between light and dark (and opposite) are enhanced. Such a transition is often denoted an edge in an image.

Correlation

Correlation is an operation which also works by scanning through the image and applying a filter to each pixel. In correlation, however, the filter is denoted a **kernel** and plays a more active role. First of all the kernel is filled by numbers—denoted kernel coefficients.

3x3 Mean kernel

5x5 Gaussian kernel

3x3 Sobel kernel

Graphical representation

An example for one pixel and general formula

• $g(2, 2) = h(-1,-1) \cdot f(1, 1) + h(0,-1) \cdot f(2, 1) + h(1,-1) \cdot f(3, 1) + h(-1, 0)$. $f(1, 2)+h(0, 0) \cdot f(2, 2)+h(1, 0) \cdot f(3, 2)+h(-1, 1) \cdot f(1, 3)+h(0, 1) \cdot f(2,$ 3*)*+ *h(*1*,* 1*)* · *f (*3*,* 3*)*

$$
g(x, y) = \sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot f(x + i, y + j)
$$

Template matching

Input image

Template matching is used to locate an object in an image. When applying template matching the kernel is denoted a **template**.

Correlation result

Example

Input image

Correlation

Template

Normalized cross correlation

Normalized cross-correlation (NCC)

$$
\cos \theta = \frac{\overrightarrow{H} \cdot \overrightarrow{F}}{|\overrightarrow{H}| \cdot |\overrightarrow{F}|}
$$

Length of template =
$$
\sqrt{\sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot h(i, j)}
$$

$$
NCC(x, y) = \frac{\text{Correlation}}{\text{Length of image patch} \cdot \text{Length of template}} \implies
$$

$$
NCC(x, y) = \frac{\sum_{j=-R}^{R} \sum_{i=-R}^{R} (H \cdot F)}{\sqrt{\sum_{j=-R}^{R} \sum_{i=-R}^{R} (F \cdot F)} \cdot \sqrt{\sum_{j=-R}^{R} \sum_{i=-R}^{R} (H \cdot H)}}
$$

Zero-mean normalized cross-correlation (ZMNCC)

• Here the mean values of the template and image patch are subtracted from H and F, respectively. This is known as the zero-mean normalized cross-correlation or the correlation coefficient. The output is in the interval [−1, 1] where 1 indicates a maximum similarity (as for NCC) and −1 indicates a maximum negative similarity, meaning the same pattern but opposite gray-scale values: 255 instead of 0, 254 instead of 1, etc.

OpenCV possibilities

1. method=TM_SQDIFF

$$
R(x,y) = \sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2
$$

2. method=TM_SQDIFF_NORMED

$$
R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
$$

3. method=TM_CCORR

$$
R(x,y)=\sum_{x',y'}(T(x',y')\cdot I(x+x',y+y'))
$$

4. method=TM_CCORR_NORMED

$$
R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
$$

5. method=TM_CCOEFF

$$
R(x,y) = \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))
$$

where

$$
\begin{aligned} T'(x',y') &= T(x',y') - 1/(w \cdot h) \cdot \sum_{x'',y''} T(x'',y'') \\ I'(x+x',y+y') &= I(x+x',y+y') - 1/(w \cdot h) \cdot \sum_{x'',y''} I(x+x'',y+y'') \end{aligned}
$$

6. method=TM_CCOEFF_NORMED

$$
R(x,y) = \frac{\sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'} T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}}
$$

Edge detection

Gradients

Image edges

• Gradient appoximations: $g_x(x, y) ≈ f(x + 1, y) - f(x - 1, y)$ $g_y(x, y) ≈ f (x,y +1)-f (x,y -1)$

$$
Magnitude = \sqrt{g_x^2 + g_y^2}
$$

Approximated magnitude = $|g_x| + |g_y|$

Kernels

Results

Image sharpening

 (b)

Equations and kernels

$$
g_{xx}(x, y) \approx f(x-1, y) - 2 \cdot f(x, y) + f(x+1, y)
$$

\n $g_{yy}(x, y) \approx f(x, y-1) - 2 \cdot f(x, y) + f(x, y+1)$

 $g(x, y) = f(x, y) - c(f(x, y) \circ h(x, y))$