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Chapter 2. Solution of state equations

Lecture 3: time domain solution of a linear state equation

We start with a comparison to a first order linear ODE to move towards a multi-dimensional case
which relies on matrix algebra. Our goal is to build the solution of linear time invariant models
expressed in the standard state equation form

~̇x(t) = A~x(t) +B~u(t),

~y(t) = C~x(t) +D~u(t) (2.1)

First, let’s look at a homogeneous case which is ~u(t) = 0 and ~x(0) = ~x0

~̇x = A~x. (2.2)

A one dimensional case is
ẋ(t) = ax(t), (2.3)

the solution of which is ( for x(0) = x0) :

xh(t) = eatx0 (2.4)

The exponent in (2.4) maybe expanded in a power series

xh(t) =

(
1 + at+

a2t2

2!
+
a3t3

3!
+ ...+

akT k

k!
+ ...

)
x0 (2.5)

This is an infinite power series that converges for all finite time values t > 0. It can be shown that
in the n-th dimensional case ~̇x(t) = A~x(t) the homogeneous solution is

~xh(t) =

(
1 + At+

A2t2

2!
+
A3t3

3!
+ ...+

Aktk

k!
+ ...

)
~x0. (2.6)

The similarity of (2.5) and (2.6) leads us to the introduction of the matrix exponent for a square
n× n matrix A

eAt = I + At+
A2t2

2!
+
A3t3

3!
+ ...+

Aktk

k!
+ ... (2.7)

which itself is a square n× n matrix. So

~xh(t) = eAt~x0, ~̇x = A~̇x (2.8)

Equation (2.8) is often written in a form

~xh(t) = Φ(t)~x0 (2.9)
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Where Φ(t) = exp(At) and is called the state transition matrix which makes sense since ( 2.9 ) is
a transition from the initial state ~x0 to the state at the time t which is ~x(t).

Example 2.1 a. Let ~x0 = ~x(0) = (2; 3) and{
ẋ1 = −2x1 + u,
ẋ2 = x1 − x2

A =

(
−2 0
1 −1

)
; B =

(
1
0

)
;

For the state transition matrix we shall write the first free terms

Φ(t) = eAt = I + At+
A2t2

2!
+
A3t3

3!
+ ...+

Aktk

k!
+ ... =

=

(
1 0
0 1

)
+

(
−2 0
1 −1

)
t+

(
4 0
−3 1

)
t2 +

(
−8 0
7 −1

)
t3 + ... =

=


1− 2t+

4t2

2!
+
−8t3

3!
+ ... 0

1 + t+
−3t2

2!
+

7t3

3!
+ ... 1− t+

t2

2!
+
−t3

3!
+ ...

 (2.10)

We encourage the reader to write out e−2t, e−t as in formula (2.5) so we can recognize that

Φ(t) =

(
e−2t 0

e−t − e−2t e−t.

)
As x0 = (2; 3) and xh(t) = Φ(t)x0(

x1

x2

)
=

(
2e−2t

2e−t − 2e−2t + 3e−t

)
=

(
2e−2t

5e−t − 2e−2t

)
. �

The forced state response u(t) 6= 0 :

The complete response of a first order system ẋ(t) = ax(t) + bu(t), can be shown and proven by
substitution to be [1]

x(t) = eatx0 +

∫ t

0

ea(t−τ)bu(τ)dτ (2.11)

The factor eat can be excluded from integration since it does not depend on the τ internal variable.

x(t) = eatx0 + eat
∫ t

0

eaτbu(τ)dτ (2.12)

As for the general and dimensional case the solution is again very similar

x(t) = eAt ~x0 +

∫ t

0

eA(t−τ)B~u(τ)dτ (2.13)

or

x(t) = eAt ~x0 + eAt
∫ t

0

eAτB~u(τ)dτ. (2.14)
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Both (2.13) and (2.14) are equal representations of the complete solution of the state equation
~̇x(t) = A~x(t) + B~u(t). Note that the matrix inside (2.14) exp−Aτ B~u(t) is a multiplication of
(n × n)(n × p)(p × 1) matrices and is a (n × 1) column vector. Like any matrix it undergoes
integration element by element.

Example 2.1 b. Here u(t) = 5, t > 0 using the formula (2.14)(
x1

x2

)
=

(
2e−2t

5e−t − 2e−2t

)
+

(
e−2t 0

e−t − e−2t e−t.

)
×
∫ t

0

(
e−2t 0

e−t − e−2t e−t.

)(
1
0

)
5dτ =

=

(
2e−2t

5e−t − 2e−2t

)
+

(
e−2t 0

e−t − e−2t e−t.

)
×


t∫

0

5e2τdτ

t∫
0

(5eτ − 5e2τ )dτ

 =

=

(
2e−2t

5e−t − 2e−2t

)
+

(
e−2t 0

e−t − e−2t e−t.

)
×


5

2
e2t − 5

2

−5

2
e2t + 5et − 5

2

 =

=

(
2e−2t

5e−t − 2e−2t

)
+


5

2
− 5

2
e−2t

5

2
e−2t − 5e−t +

5

2

 =
1

2

−e−2t + 5

e−2t + 5

 . � (2.15)

The system output response:

The algebraic output ~y(t) = C~x(t)+D~u(t) is a sum of a homogeneous (zero input) plus a forced
(zero initial condition) components

~y(t) = ~yh(t) + ~yf (t) = CeAt ~x0 + CeAt
∫ t

0

eAτB~u(τ)dτ +D~u(t). (2.16)

Example 2.1 c. Using the same system let’s construct the output, for which we have chosen
y(t) = 2x1 + x2,. Please note, that for formula (2.16) we have already done some calculations in
(2.15):

eAt
∫ t

0

eAτB~u(τ)dτ =


5

2
− 5

2
e−2t

5

2
e−2t − 5e−t +

5

2


as well as in example 2.1 a, we have already written

eAt~x0 =

(
x1

x2

)
=

(
2e−2t

5e−t − 2e−2t

)
.

Then since C = (2, 1) and D = 0 we get

y(t) = 2 · 2e−2t + 1(5e−t − 2e−2t) + 2

(
5

2
− 5

2
e−2t

)
+ 1

(
5

2
e−2t − 5e−t +

5

2

)
=

15

2
− e−2t

2
. �
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Some properties of the state transition matrix Φ(t)

1) Φ(−t) = Φ−1(t) this is how we can calculate ~xh back in time

~xh(−t) = Φ−1(t)~x(0)

2) Φ(t1 + t2) = Φ(t1)Φ(t2). If the initial condition is set not at t = 0 but rather at t = t0 we get

~xh(t) = Φ(t− t0)~x(t0) (2.17)

Lecture 4: system eigenvalues and eigenvectors

So far we have calculated the matrix exponent of the state transition matrix using a direct method
or formula definition (2.7) as in example 2.1 a. These calculations were quite cumbersome so (2.7) is
rarely actually used for applied calculations. There are more than a dozen ways to find eAt however
for control purposes by far the best one is driving the square matrix a to the diagonal form first.

Each square matrix An×n has a certain (≤ n) number of real or complex numbers λi, i ≤ n
which are called eigenvalues. What makes them special is that they come in pairs of (n×1) column
vectors ~mi called eigenvectors [2]:

A~mi = λi ~mi =


λim1i

λim2i
...

λimni

 . (2.18)

So you see that for pairs of (λi,mi) the rather complex matrix multiplication of A~mi comes down
to a simple multiplication of the column mi by λi. Note that if ~mi is an eigenvector of A then α~mi

is also an eigenvector so we should pair other (λi, α~mi) where α is a real or complex number but
α 6= 0.

Example 2.2. Find eigenvalues and eigenvectors of A.
The way eigenvalues can values are found is through a characteristic equation

det(λIn×n − A) = 0 (2.19)

A =

(
−2 1
2 −3

)
; λI − A =

(
λ 0
0 λ

)
−
(
−2 1
2 −3

)
=

(
λ+ 2 −1
−2 λ+ 3

)
;

det(λI − A) = 0, =⇒ (λ+ 2)(λ+ 3)− 2 = 0, λ2 + 5λ+ 4 = 0 =⇒ λ1 = −4, λ2 = −1.

So the eigenvalues are (−4,−1).
The way eigenvectors are found is by substituting λi into

(λiI − A)~mi = 0. (2.20)

For λ1 = −4 we get

(λ1I − A)~mi =

[(
λ 0
0 λ

)
−
(
−2 1
2 −3

)](
m11

m21

)
= 0,

(
−4 + 2 −1
−2 −4 + 3

)(
m11

m21

)
=

(
−2 −1
−2 −1

)(
m11

m21

)
= 0 =⇒

{
−2m11 −m21 = 0,
−2m11 −m21 = 0
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which means that m21 = −2m11 so all vectors A ~m1 = (m11;m21) with such an equality are going
to be an eigenvector for λ1 = −4. For example, for λ = −4 we get

~m1 =

(
m11

m21

)
=

(
1
−2

)
,

(
2
−4

)
,

(
3
−6

)
,

(
−10
20

)
, . . .

For λ2 = −1 we get

λ2I − A =

(
1 −1
−2 −2

)
so (2.19) is (

1 −1
−2 −2

)(
m11

m21

)
= 0,

and {
m11 −m21 = 0,
−2m11 + 2m21 = 0

so m21 = m11 and all such vectors are eigenvectors of A:

~m2 =

(
m11

m21

)
=

(
1
1

)
,

(
−9
−9

)
,

(
2 + 3i
2 + 3i

)
, . . . �

We have reviewed this process to present a way to calculate a matrix exponent. It turns out that
if we construct a modal matrix M = (m1m2...mn) where m1,m2, ...,mn are arbitrary eigenvectors
corresponding to their eigenvalues λ1, λ2, ..., λn and

eΛt =


eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt

 ; Φ(t) = eAt = MeΛtM−1; (2.21)

From (2.20) it is obvious that a homogeneous response of a state equation ~̇x = A~x is

~xh(t) = Φ(t)~x(0) = MeΛtM−1~x(0). (2.22)

Example 2.3. The continuation of example 1.5 — a rotational electromechanical system: a DC
servomotor.

Equations (1.34) and (1.35) completely describe the system state equation. For instance, let’s
assume L = 1 N; R = 2 Ohms; J = 1 kg m2; µ = 1Nms (motor shaft damping); α = 2N m/s
(torque constant); Then, (1.34) looks likeθ(t)θ̇(t)

θ̈(t)

0 1 0
0 0 1
0 −2 −3

ẋ1

ẋ2

ẋ3

+

0
0
2

 v(t), y(t) = x1(t) (2.23)

Characteristic equation detλI − A) = 0λ −1 0
0 λ −1
0 2 λ+ 3

 = λ(λ(λ+ 3) + 2) = λ(λ2 + 3λ+ 2) = 0, λ1 = 0, λ2 = −1, λ3 = −2.
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Here you can see that one of the eigenvalues is 0, therefore we cannot use formulas (2.18 - 2.20).
Luckily there are plenty of other ways to compute a matrix exponent.

eAt =
n−1∑
k=0

αk(t)A
k, (2.24)

where scalar analytic functions α satisfy

W =


1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2
...

...
... . . .

...
1 λn λ2

n . . . λn−1
n

 , (2.25)

where W is a Vandermonde matrix. From (2.23) clearly
α0

α1

α2
...

αn−1

 = W−1


eλ1t

eλ1t

...
eλnt

 (2.26)

For our example

W =

1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3

 =

1 0 0
1 −1 1
1 −2 4

 ; W−1 =

 1 0 0
1.5 −2 0.5
0.5 −1 0.5

 ;

Using (2.24) α0

α1

α2

 =

 1 0 0
1.5 −2 0.5
0.5 −1 0.5

 e0t

e−t

e−2t

 =

 1
1.5− 2e−t + 0.5e−2t

0.5− e−t + 0.5e−2t


Formula (2.22):

eAt = Φ(t) = α0 + α1A+ α2A
2 = 1I + (1.5− 2e−t + 0.5e−2t)

0 1 0
0 0 1
0 −2 −3

+

+(0.5− e−t + 0.5e−2t)

0 1 0
0 −2 −3
0 6 7

 =

1 1.5− 2e−t + 0.5e−2t 0.5− e−t + 0.5e−2t

0 2e−t − e−2t e−t − e−2t

0 −2e−t + 2e−2t −e−t + 2e−2t

 .

Let’s assume u(t) = 0 and ~x0 = (1; 1; 1). Using this and equation (2.14) we can acquire the zero-
input open loop state response (Figure 2.1). Figure 2.1 shows how does each of the state variables
change over time. Let’s look at the way one can do this in Matlab.

% Input the matrices.

A_ccf = [ 0 1 0; 0 0 1; 0 -2 -3 ]; B_ccf = [ 0; 0; 2 ];

C_ccf = [1 0 0]; D_ccf = 0;
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Fig. 2.1: State variables x1, x2, x3 over time.

% % Create a state -space representation of the open -loop

% % uncontrolled system.

system = ss(A_ccf ,B_ccf ,C_ccf ,D_ccf);

% % A characteristic polynomial of the open -loop system.

Poly_opl = poly(A_ccf);

% % Eigenvalues - the roots of the characteristic polynomial.

roots(Poly_opl)

% Set up time.

t = 0:0.01:5;

% Set up initial conditions.

X0 = ones (3,1);

% Set up the signal values.

U = zeros(size(t) );

% Get the time and signal data of each of the state variables.

% This function automatically calculates the response using either

% formulas (2.21 -2.22) or the Vandermonde matrix approach.

[Y_uncont , t, X_uncont] = lsim( system , U, t, X0 );

% Plot the response.

subplot (311), plot( t,X_uncont (:,1) );

ylim( [0.95 3.5] );

subplot (312), plot( t,X_uncont (:,2) );

ylim( [-0.05 1.25] );

subplot (313), plot( t,X_uncont (:,3) );

ylim( [-0.75 1.05] );
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