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Chapter I. Introduction to the state-space approach  

Lecture 1. State-space representation of a control system  

 An engineering system is often represented as a system of ordinary differential equations 

(ODEs). The classical approach involves converting this system to a transfer function [1]. Such 

an operation usually involves a certain integral transform like the Laplace or the Z-transform. 

This algebraically relates the system’s model to the complex integral transformation images of 

both input and output signals. Replacing a differential equation with an algebraic one simplifies 

modeling of interconnected systems. However, these methods are mainly applicable to single-

input single-output systems, which limits the capabilities of closed-loop feedback control. A 

variety of engineering processes require a mathematical representation of multiple-input 

multiple-output systems, which have led to the development of the state-space approach (also 

known as time-domain approach [2, 3]). 

State-space can be used to represent nonlinear systems that have backlash, saturation and 

dead-zone. Also, it easily handles nonzero initial conditions. This lecture introduces the state-

space representation for linear time invariant systems. We show how to derive state equations for 

physical systems described with a single ODE, a system of them or represented as a transfer 

function. Let’s start with a one-dimensional case of a linear time-invariant system: 

{

�̇�(𝑡) = 𝑎 ∙ 𝑥(𝑡) + 𝑏 ∙ 𝑢(𝑡)

𝑥(𝑡0) =  𝑥0
𝑦(𝑡) = 𝑐 ∙ 𝑥(𝑡) + 𝑑 ∙ 𝑢(𝑡).

 (1.1) 

The first two expressions of (1.1) is a classical Cauchy problem for an ODE. Let’s refer to 

function x(t) as a state variable. The u(t) is the input function, while y(t) is the output. As we 

are going to see later, this form of an ODE system is very common with the constant coefficients 

a, b, c and d describing the relations between the input, output and the so-called state variable. 

 

Example 1.1. The RL network. 

Here the one loop of Kirchoff’s or Ohm’s law (Fig. 1.1) gives 

𝐿 
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑣(𝑡), #(1.2)  

where v(t) is the input DC voltage, R is the resistance, L is the inductance and i = i(t) is the 

current. Let’s rewrite the equation as 

𝑑𝑖(𝑡)

𝑑𝑡
=  −

𝑅

𝐿
𝑖(𝑡) + 

1

𝐿
𝑣(𝑡). #(1.3)  

Here it is clear that the state variable is x(t) = i(t), while the input is u(t) = v(t). 



Now we see that 𝑎 =  −
𝑅

𝐿
, 𝑏 =  

1

𝐿
  (see Eq. 1.1). For our purposes here the zero-state condition 

x(t0) = x0 can be arbitrary, for example, 

 
 

Figure 1.1. RL network 

 

t0 = 0 seconds and i(0) = 1 Ampere. As for the output function we have a choice here between 

i(t), VR(t) or VL(t). Later we shall see that choosing the output or even state variables is an 

important part of the state-space representation. Let’s choose y(t) = i(t), then c = 1 and d = 0 (see 

Eq. 1.1). 

 

State equations – a general case 

A state-space representation of a linear time-invariant system (LTI) has the following general 

form: 

{

x⃗ ̇(t) = A ∙ x⃗ (t)+  B ∙ u⃗⃗ (t)

x⃗ (t0) = x0⃗⃗⃗⃗ 

y⃗ (t) = C ∙ x⃗ (t)+  D ∙ u⃗⃗ (t)

 #(1.4)  

 

This time, however, equations (1.4) are written for vectors and matrices, and 𝑥 (𝑡) is a state 

vector with size (n × 1): 

𝑥 (𝑡) =  

(

 
 
𝑥1(𝑡)

𝑥2(𝑡)
. . .
𝑥𝑛(𝑡))

 
 
, 

where 𝑥1(𝑡), …  𝑥𝑛(𝑡) are functions of time and are the chosen state variables. Same applies to 

𝑥 ̇(𝑡) and 𝑥0⃗⃗⃗⃗ , both having size (n × 1):  

𝑥 ̇(𝑡) =  

(

 
 
𝑥1̇(𝑡)
𝑥2̇(𝑡)
. . .
𝑥�̇�(𝑡))

 
 
,      𝑥0⃗⃗⃗⃗ =  𝑥 (𝑡0) =  

(

 
 
𝑥1(𝑡0)

𝑥2(𝑡0)
. . .

𝑥𝑛(𝑡0))

 
 
=  

(

 
 𝑥10
𝑥20
. . .
𝑥𝑛0)

 
 
 , 

where 𝑥1̇(𝑡), … , 𝑥�̇�(𝑡) are functions of time and 𝑥10, …, 𝑥𝑛0 are constant initial state values . 

 Now let’s discuss the matrices A, B, C and D. Since 𝑥 ̇(𝑡), 𝑥 (𝑡) and 𝑥0⃗⃗⃗⃗  are (n × 1) vectors 

or columns, A is a square (n × n) matrix:  

A(n × n) = (

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮
an1

⋮
an2

⋱ ⋮
⋯ ann

) ,#(1.5)   



 

where aij  are constant values. Here and later the matrix size will be shown in upper index. 

The number of inputs is not necessarily the same as the number of state variables, 

therefore we assume �⃗� (𝑡) to be a (r+1) vector, so B is a (n × r) matrix: 

u⃗⃗ (t) = 

(

 
 
u1(t)
u2(t)
. . .
ur(t))

 
 
, B

(n×r) = 

(

 

b11 b12 ⋯ b1r
b21 a22 ⋯ b2r
⋮
bn1

⋮
bn2

⋱ ⋮
⋯ bnr)

 , #(1.6)  

where bij are constant values 

At last let’s look at the third expression in (1.4). The number of elements in 𝑦 (𝑡) is 

chosen by the designer. Considering the dimensions of �⃗� (𝑡), 𝑥 (𝑡) and due to the rules of matrix 

multiplication (see below) we get:  

 𝑦 (𝑡) (𝑝 ×1) = 

(

 
 
𝑦1(𝑡)

𝑦2(𝑡)
. . .
𝑦𝑝(𝑡))

 
 
, 𝐶(𝑝×𝑛) = (

𝑐11 𝑐12 ⋯ 𝑐1𝑛
𝑐21 𝑐22 ⋯ 𝑐2𝑛
⋮
𝑐𝑛1

⋮
𝑐𝑛2

⋱ ⋮
⋯ 𝑐𝑝𝑛

) ,

  𝐷(𝑝×𝑟) = (

𝑑11 𝑑12 ⋯ 𝑑1𝑟
𝑑21 𝑑22 ⋯ 𝑑2𝑟
⋮
𝑑𝑝1

⋮
𝑑𝑝2

⋱ ⋮
⋯ 𝑑𝑝𝑟

)  , #(1.7)

 

where cij  are constant values. Please note that unlike A, the matrix C may not be (and usually 

isn’t) square, as in general n ≠p. Just like we have just shown that C is (𝑝 × 𝑛) matrix, we 

encourage the reader to check and prove that D is a (𝑝 × 𝑟) matrix. 

 

Supplementary mathematics – vector and matrix multiplication. 

 

Based on the given number of column elements in 𝑥 (𝑡) and �⃗� (𝑡) as well as the number of 

chosen output parameters in 𝑦 (𝑡) in (1.4) we have established the dimensions of the matrices A, 

B, C and D. However, we feel obliged to provide the reader with additional information on linear 

algebra, particularly, the matrix multiplication. 

  A matrix is a two-dimensional array of real and complex numbers: 

(
1 3 −8
0 −4 2

) is a (2x3) matrix.  

 

(2𝑖 8 9 −1) is a (1x4) matrix. Matrices like this are usually called row vectors. 

 

(

−1
0
4
1

) , (

𝑥1
𝑥2
𝑥3
𝑥4

) − (4 × 1)  matrices, (
1
2
3
) −  (3 × 1) matrix,     they are all column vectors. 

 

If we look at the 𝑥 (𝑡) vector in (1.4) we see that it is a (n x 1) matrix (or column vector). Same 

goes for 𝑥 ̇(𝑡) and 𝑥0⃗⃗⃗⃗ . 



 You can see that (n x m) matrix has n rows and m columns. For example, the C matrix in 

1.7 is a p x n matrix. A special case is when the number of rows is equal to the number of 

columns. In this case the matrix is called square. Matrix A from (1.5) is a square (n x n) matrix. 

 We follow our narrative with a few features and facts.  

1. Matrices of the same dimensions can be added and subtracted element by element: 

(
1
−3
4
) + (

0
8
3
) =  (

1
5
7
) ;       (

9 5
−4 0

) − (
1 1
1 1

) =  (
8 4
−5 −1

) ; 

(
7 3
4 𝑖
−3𝑖 4

) + (
0 −1
0 3
10 8

) =  (
7 2
4 3 + 𝑖

10 − 3𝑖 12
) , where 𝑖 =  √−1 

 

Matrix addition or subtraction for matrices with different dimensions is undefined:  

 

(
1 3 10
0 58 −1

) + (
1 0
0 1

) = "𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑". 

 

These “+” and “-” operations follow the same rules as for real numbers. For A and B both 

(m x n) matrices: 

 

𝐴 ± 𝐵 = 𝐵 ± 𝐴, 

                   (𝐴 ± 𝐵) ± 𝐶 = 𝐴 ± (𝐵 ± 𝐶), #(1.8)  

𝐴 ± 𝑶 = 𝐴, 

 

where O is a (m x n) matrix where each element equals to zero. 

 

2. A matrix can be multiplied by a real or complex number and it is defined element-wise: 

 

𝛼 (
𝑎11 𝑎12
𝑎21 𝑎22

) =  (
𝛼 ∙ 𝑎11 𝛼 ∙ 𝑎12
𝛼 ∙ 𝑎21 𝛼 ∙ 𝑎22

), 

 

𝛼(𝑐11 𝑐12 𝑐13) =  (𝛼 ∙ 𝑐11 𝛼 ∙ 𝑐12 𝛼 ∙ 𝑐13), 
 

𝛽 (
1
0
2
) = (

𝛽
0
2𝛽
). 

 

This operation has the following features: 

 

(𝛼𝛽)𝐴 = 𝛼(𝛽𝐴),  

𝛼(𝐴 + 𝐵) = 𝛼𝐴 +  𝛼𝐵, #(1.9)  

(𝛼 + 𝛽)𝐴 = 𝛼𝐴 +  𝛽𝐴 

𝑶 ∙ 𝐴 =  𝑶,  

 

where 𝛼 and 𝛽 − real or complex numbers. 

 



3. The matrix product C = AB of a (n x m) matrix A and (p x q) matrix B can be defined only 

when m = p. This means that the number of columns of  A must be equal to the number of rows 

of B. Then C = AB: 

𝐶 = [𝑐𝑖𝑗], 𝑐𝑖𝑗  =  ∑𝑎𝑖𝑘 ∙ 𝑏𝑘𝑗

𝑚

𝑘=1

, #(1.10)  

where 𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2, … ,𝑚. 

 

Expression (1.10) is commonly described by the “row by column” rule. Let’s say we multiply 

two matrices:  

𝐶 = 𝐴(3×𝟐)   × 𝐵(𝟐×4) = (
𝟏 𝟒
5
𝟑

−2
−𝟏
) × (

𝟏 2 3 𝟒
−𝟏 3 8 𝟏

) 

The result matrix C is going to be of the size (3 × 2) ∙ (2 × 4) ⇒ (3 × 4). The first element  

𝐶m =  1 ∙ 1 + 4 ∙ (−1) =  −3 is similar to a scalar product of the first row of A with the first 

column of B. Just like that C34 is a product of row 3 of A and column 4 of B:  

𝐶34 = 3 ∙ 4 − 1 ∙ 1 = 11 

and  

𝐶 = (
1 ∙ 1 − 4 1 ∙ 2 + 4 ∙ 3 1 ∙ 3 + 4 ∙ 8 1 ∙ 4 + 4 ∙ 1
5 ∙ 1 + 2 5 ∙ 2 − 6 5 ∙ 3 − 16 5 ∙ 4 − 2
3 ∙ 1 + 1 3 ∙ 2 − 3 3 ∙ 3 − 8 3 ∙ 4 − 1

) = (
−3 14 35 8
7 4 −1 18
4 3 1 11

).  

 

The main features of matrix multiplication are: 

 

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶),  

A𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶,  

(𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴,  

Generally speaking, 𝐴𝐵 ≠ 𝐵𝐴. 

 

We can understand the reason why is matrix multiplication defined the way it is as in (1.10) by a 

closer look at equations (1.4): 

{

𝑥1̇ = 𝑎11 ∙ 𝑥1 + 𝑎12 ∙ 𝑥2 +⋯+ 𝑎1𝑛 ∙ 𝑥𝑛 + 𝑏11 ∙ 𝑢1 +⋯+ 𝑏1𝑟 ∙ 𝑢𝑟
𝑥2̇ = 𝑎21 ∙ 𝑥1 + 𝑎22 ∙ 𝑥2 +⋯+ 𝑎2𝑛 ∙ 𝑥𝑛 + 𝑏21 ∙ 𝑢1 +⋯+ 𝑏2𝑟 ∙ 𝑢𝑟

⋮
𝑥�̇� = 𝑎𝑛1 ∙ 𝑥1 + 𝑎𝑛2 ∙ 𝑥2 +⋯+ 𝑎𝑛𝑛 ∙ 𝑥𝑛 + 𝑏𝑛1 ∙ 𝑢1 +⋯+ 𝑏𝑛𝑟 ∙ 𝑢𝑟

. #(1.11)   

The reason why systems like (1.11) are called linear is because each of the 𝑥�̇� , 𝑘 = 1, 2, … , 𝑛 

depends on a linear combination of the state variables 𝑥1, 𝑥2, … , 𝑥𝑛, since all of the 𝑎𝑖𝑗 are 

constant values (compare with a linear function 𝑧(𝑡) =  𝛼 ∙ 𝑡 + 𝛽, where α and β  are real 

numbers). System (1.11) lets us understand the definition (1.10) since  

𝑥 ̇(𝑡) =  

(

 
 
𝑥1̇(𝑡)
𝑥2̇(𝑡)
. . .
𝑥�̇�(𝑡))

 
 
= 𝐴 ∙ 𝑥 (𝑡) +  𝐵 ∙ �⃗� (𝑡).  



Same goes for the output 𝑦 (𝑡): 

𝑦 (𝑡) = 𝐶 ∙ 𝑥 (𝑡) +  𝐷 ∙ �⃗� (𝑡), 

 

{

𝑦1 = 𝑐11 ∙ 𝑥1 + 𝑐 ∙ 𝑥2 +⋯+ 𝑐1𝑛 ∙ 𝑥𝑛 + 𝑑11 ∙ 𝑢1 +⋯+ 𝑑1𝑟 ∙ 𝑢𝑟
𝑦2 = 𝑐21 ∙ 𝑥1 + 𝑐22 ∙ 𝑥2 +⋯+ 𝑐2𝑛 ∙ 𝑥𝑛 + 𝑑21 ∙ 𝑢1 +⋯+ 𝑑2𝑟 ∙ 𝑢𝑟

⋮
𝑦𝑝 = 𝑐𝑛1 ∙ 𝑥1 + 𝑐𝑛2 ∙ 𝑥2 +⋯+ 𝑐𝑛𝑛 ∙ 𝑥𝑛 + 𝑑𝑛1 ∙ 𝑢1 +⋯+ 𝑑𝑛𝑟 ∙ 𝑢𝑟

. #(1.12)  

 

Example 1.2. A simple translational mechanical system 

Figure 1.2 depicts the mass m being under the influence of three forces: the external input force 

F(t) and two resistance forces: spring load FS and the viscous damping force FV.  We note k as the 

 
Figure 1.2. Simple translational mechanical system. 

 

spring elasticity coefficient and µ as the viscous friction coefficient of the damper. 

Using Newton’s second law let’s write the dynamic force balance: 

𝑚 ∙ �̈�(𝑡) = 𝑓(𝑡) −  𝜇�̇�(𝑡) − 𝑘𝑧(𝑡). #(1.14)  

Since the highest derivative is by order of 2, we are going to select two state variables. 

NB! At large it is a good idea to choose variables connected to the system’s energy. The 

potential energy is 𝑈 =  
1

2
𝑘 ∙ 𝑧(𝑡)2 and kinetic energy is  𝑇 =  

1

2
𝑚 ∙ �̇�(𝑡)2, so we choose: 

𝑥 (𝑡) =  (
𝑥1(𝑡)
𝑥2(𝑡)

),         
𝑥1(𝑡) = 𝑧(𝑡)

𝑥2(𝑡) = �̇�(𝑡) = 𝑥1̇(𝑡) 
, 

then �̈�(𝑡) =  𝑥2̇(𝑡) and (1.14) is 

𝑚𝑥2̇(𝑡) = 𝑓(𝑡) −  𝜇𝑥2(𝑡) − 𝑘𝑥1(𝑡) #(1.15)  

Now let’s combine all we have keeping in mind that we are constructing the form 

 𝑥 ̇(𝑡) = 𝐴 ∙ 𝑥 (𝑡) +  𝐵 ∙ �⃗� (𝑡). Here �⃗� (𝑡) = 𝑓(𝑡) is a one-element matrix(vector): 

{

𝑥1̇(𝑡) =  𝑥2(𝑡)

𝑥2̇(𝑡) =  −
𝑘

𝑚
𝑥1(𝑡) −

𝜇

𝑚
𝑥2(𝑡) + 

𝑓(𝑡)

𝑚

, #(1.16)  

so 𝐴 =  (
0 1

−
𝑘

𝑚
−

𝜇

𝑚

) , 𝐵 =  (
0
1

𝑚

).  



As for the output in this system there is a choice, however the most obvious one is the mass 

displacement 𝑦(𝑡) = 𝑧(𝑡) = 𝑥1(𝑡). Since 𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷�⃗� (𝑡) we see that 𝐶 = (1 0) and  

D = 0: 

{
 
 

 
 𝑦 (𝑡) = 𝑥1(𝑡) = (1 0) (

𝑥1
𝑥2
) =  𝑥1

𝑥 ̇(𝑡) =  (
0 1

−
𝑘

𝑚
−
𝜇

𝑚

)(
𝑥1(𝑡)
𝑥2(𝑡)

)
, 

which is the (1.1) classic state space form. Also, B = 0. 

Lecture 2. Examples of the state-space representation 

Example 1.3. An electrical network with two inputs 

The two inputs are the independent voltage and current sources Vin(t) and iin(t) (Figure 2.1): 

 

 
Figure 2.1. Electrical network with two inputs 

 

We assume clockwise circulating currents in each of the three meshes. The output is chosen to be 

the inductor voltage: VL(t). First we apply Kirchoff’s voltage and current laws to the two leftmost 

meshes and the node w1: 

𝑉𝑖𝑛(𝑡) = 𝐼1(𝑡) ∙ 𝑅1 + 𝑉1(𝑡) + 𝐿
𝑑
𝑑𝑡
(𝐼1(𝑡) − 𝐼2(𝑡)); 

Node w1: 𝐼𝐿(𝑡) + 𝐼2(𝑡) − 𝐼1(𝑡) = 0. 

Then 

𝑉2(𝑡) + (𝐼2(𝑡) − 𝐼3(𝑡)) ∙ 𝑅2 + 𝐿
𝑑
𝑑𝑡
(𝐼2(𝑡) − 𝐼1(𝑡)) = 0. 

Since iin(t) is a current source, 𝐼3(𝑡) = iin(t). 

 

NB! The energy in this circuit is stored in the capacitors and the inductor, so it is convenient to 

choose the following state variables:  

{

𝑥1(𝑡) = 𝑉1(𝑡) 

𝑥2(𝑡) = 𝑉2(𝑡)

𝑥3(𝑡) = 𝐼𝐿(𝑡).

 #(1.17)  

The inductor current IL(t) can be expressed as IL(t) = 𝐼2(𝑡) − 𝐼1(𝑡). The inputs are the sources: 

 



{
𝑈1(𝑡) =  𝑉𝑖𝑛(𝑡),

𝑈2(𝑡) =  𝑖𝑖𝑛(𝑡)
#(1.18)  

The output: 

𝑦(𝑡) = 𝑉𝐿(𝑡) = 𝐿
𝑑𝐼𝐿
𝑑𝑡

= 𝐿�̇�3 #(1.19)  

For a capacitor 𝐼 = 𝐶
𝑑𝑉

𝑑𝑡
, so 

 

{

𝐼1(𝑡) = 𝐶1 ∙ 𝑉1(𝑡) = 𝐶1�̇�1 

𝐼2(𝑡) = 𝐶2�̇�2 

𝐼𝐿(𝑡) = 𝐼2(𝑡) − 𝐼1(𝑡) = 𝐶1�̇�1 − 𝐶2�̇�2

#(1.20)  

NB! We write it this way so that all of the variables in the Kirchoff’s equations are expressed 

through state variables x1, x2, x3. The energy of the charge stored in a capacitor is 𝑊𝑐 = 
1

2
𝐶𝑉𝑐

2, 

the energy of the inductor current flow 𝑊𝐿 = 
1

2
𝐿𝐼𝐿

2. Now the Kirchoff equations can be recast 

as
1
:  

{

𝐶1�̇�1 − 𝐶2�̇�2 = 𝑥3(𝑡),

𝑉1(𝑡) = 𝐶1�̇�1𝑅1 + 𝑥1(𝑡) − 𝐿�̇�3,

𝑥2(𝑡) + (𝐶2�̇�2 − 𝑉2(𝑡))𝑅2 + 𝐿(𝐶1�̇�1 − 𝐶2�̇�2) = 0.

 

Now rearrange this so that the terms with �̇�1,  �̇�2,  �̇�3 are on the left side: 

{

𝐶1�̇�1 − 𝐶2�̇�2 = 𝑥3(𝑡),

𝐶1𝑅1�̇�1 − 𝐿�̇�3 = 𝑉1(𝑡) − 𝑥1(𝑡),

𝐿𝐶1�̇�1 + (𝑅2𝐶2 − 𝐿𝐶2)�̇�2 = 𝑅2𝑉2(𝑡) − 𝑥2(𝑡).

#(1.21)  

You can see that this is not yet the form we are looking for which is 𝑥 ̇(𝑡) = 𝐴 ∙ 𝑥 (𝑡) +  𝐵 ∙ �⃗� (𝑡) 

but rather 

(
𝑅1𝐶1 0 −𝐿
𝐿𝐶1 𝑅2𝐶2 − 𝐿𝐶2 0
𝐶1 −𝐶2 0

)(
�̇�1
�̇�2
�̇�3

) = (
−1 0 0
0 −1 0
0 0 1

)(

𝑥1
𝑥2
𝑥3
) + (

1 0
0 1
0 0

) (
𝑉1(𝑡)

𝑉2(𝑡)
) . #(1.22)  

NB! Equation (1.22) can be considered as 

𝐸(3𝑥3)𝑥 ̇(𝑡) = 𝐹(3𝑥3) ∙ 𝑥 (𝑡) + 𝐺(3𝑥2) ∙ �⃗� (𝑡)|  × 𝐸
−1 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 

Here we multiply the equation by 𝐸−1 this is called an inverse matrix. Inverse matrices are 

defined for square matrices. If T is a (n×n) matrix the inverse matrix T
-1 

 is such that T·T
-1 

= In×n , 

or a T
-1

·T = In×n , where In×n = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮
0

⋮
0

⋱ ⋮
⋯ 1

) is a diagonal unit square (n×n) matrix. 

 

Definition. Each square matrix T has a T
-1 

as long as its determinant det T ≠ 0. Then the matrix 

is called non-singular. We will discuss determinants more in depth later. For now we just show 

two examples: 

 

                                           
1
 Note that for convenience we shall sometimes write 𝑥1̇ instead 𝑥1̇(𝑡) as well as occasionally x1 instead x1(t). 



det (
1 2
3 4

) = 1 ∙ 4 − 2 ∙ 3 =  −2 ≠ 0 and is non − singular; 

det (
1 2 3
4 5 6
7 8 9

) = 1 ∙ (5 ∙ 9 − 6 ∙ 8) − 2(4 ∙ 9 − 6 ∙ 7) + 3(4 ∙ 8 − 5 ∙ 7) = 0 and is singular.. 

 

Also notice that since in general 𝐴𝐵 ≠ 𝐵𝐴 (see Supplementary mathematics 1), it is important to 

specify which side do we perform a matrix multiplication. Here we get 

𝐸−1 ∙ 𝐸 𝑥 ̇(𝑡) = 𝐸−1 ∙ 𝐹 ∙  𝑥 (𝑡) + 𝐸−1 ∙ 𝐺 ∙ �⃗� (𝑡). 

Since 𝐸−1𝐸 = In×n and In×n  𝑥 ̇(𝑡) = 𝑥 ̇(𝑡)  

𝑥 ̇(𝑡) =  𝐸−1 ∙ 𝐹 ∙ 𝑥 (𝑡) + 𝐸−1 ∙ 𝐺 ∙ �⃗� (𝑡), #(1.23)  

𝐸−1 ∙ 𝐹 = 𝐴∗,    𝐸−1 ∙ 𝐺 = 𝐵∗,  

which is the form of (1.1). Let’s put this into perspective and give R1, R2, C1, C2 and L actual 

values, so we may calculate these matrices. Let R1 = 250 Ohms, R2 = 300 Ohms, C1=20 nF, 

C2=40 nF and L = 0,5 mH. Then 

𝐸 =  (
5 ∙ 10−6 0 −5 ∙ 10−4

10−11 11,99 ∙ 10−6 0

2 ∙ 10−8 4 ∙ 10−8 0

) = 10−6 (
5 0 −500

10−5 11,99 0
0,03 0,04 0

)  

𝐸−1 = 10−6 (
5 0 −500

10−5 11,99 0
0,03 0,04 0

)

−1

= 106 ∙ (𝐸∗)−1 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑛𝑖𝑒𝑛𝑐𝑒. 

Let’s find 𝐸−1 in Matlab. Please, see how to write matrices in Matlab:  

 

With these calculations, we end up with  

𝐸−1 ≈ 10−6 ∙ (
0 −0,17 50

0 0,083 −4,17 ∙  10−5

−0,002 −0,0017 0,5
) ; 

𝐴∗ ≈ 10−6 ∙ (
0 0,17 50

0 −0,083 −4,17 ∙  10−5

0,002 0,0017 0,5
) ,  𝐵∗ = (

0 −0,17
0 0,083

−0,002 −0,0017
) ; 

So, 𝑥 ̇ = 10−6 ∙ 𝐴∗ 𝑥 (𝑡) + 10−6 ∙ 𝐵∗ �⃗� (𝑡) 

 
>>: E_ast = [5  0  -500; 10-5

  11,99  0;  0,02  0,04  0;] 
>>: E_ast_minus_one = inv(E_ast); %calculates the inverse matrix 
F = [-1 0 0; 0 -1 0; 0 0 1]; 
G = [1 0; 0 1; 0 0]; 
A_ast = E_ast_minus_one * F; 
B_ast = E_ast_minus_one * G; 

 



𝑥 ̇(𝑡) = (
�̇�1
�̇�2
�̇�3

) =  10−6 ∙ (
0 0,17 50

0 −0,083 −4,17 ∙  10−5

0,002 0,0017 0,5
)(

𝑥1
𝑥2
𝑥3
) +

+10−6 ∙ (
0 −0,17
0 0,083

−0,002 −0,0017
) (
𝑢1
𝑢2
) = 𝐴𝑥 + 𝐵𝑢;

#(1.24)    

The output that we want to see (the inductor voltage VL = L�̇�3) is  

𝑦 (𝑡) = 10−6(0,002 0,0027 0,5) (

𝑥1
𝑥2
𝑥3
) +

10−6(−0,002 − 0,0017) (
𝑢1
𝑢2
) = 𝐶𝑥 + 𝐷𝑢;

 #(1.25)  

which should be obvious since we take only the last rows in (1.24) to get �̇�3(𝑡). Expressions 

(1.24) and (1.25) complete the state space representation. This example shows that sometimes 

simple matrix arithmetic is required in order to make a state-space representation unlike example 

1.2. 

NB! Please note that the number of state variables is tied to the number and order of the 

given equations. Example 1.2 has a simple second-order differential equation, therefore has two 

first order differential equations (voltage law) and algebraic one (the node currents), therefore it 

has three state variables x1, x2 and x3. 

 

Example 1.4. A single-input, single-output rotational mechanical system. 

 

 
Figure 1.4 A single-input, single-output rotational mechanical system 

 

If the shaft is flexible k ≠ 0. Both the viscous damping and the spring reaction by twisting the 

shaft at an angle θ(t) oppose the external torque τ(t). For rotational mechanical systems there is 

the equivalent of the Newton’s second law called Euler rotational law: 

𝐽�̈�(𝑡) =  𝜏(𝑡) −  𝜇 ∙ �̇�(𝑡) − 𝑘 ∙ 𝜃(𝑡) #(1.26)  

This is a single second order ODE so we have two state variables to choose. Once again, the 

energy storage of 𝑊 =
1

2
𝑘 ∙ 𝜃(𝑡)2and 𝑇 =

1

2
𝐽 ∙ �̇�(𝑡)2 hint us for 

𝑥1(𝑡) =  𝜃(𝑡),

𝑥2(𝑡) = �̇�(𝑡) = 𝑥1̇
 

Then (1.26) is written as 𝐽𝑥2̇ = −𝑘𝑥1 − 𝜇𝑥2 + 𝜏(𝑡), so 

 



{

𝑥1̇ = 𝑥2

𝑥2̇ = −
𝑘

𝐽
𝑥1 −

𝜇

𝐽
𝑥2 +

𝜏(𝑡)

𝐽

. #(1.27)  

 

(
𝑥1̇
𝑥2̇
) =  (

0 1

−
𝑘

𝐽
−
𝜇

𝐽

) (
𝑥1
𝑥2
) + (

0
1

𝐽

) 𝜏(𝑡). #(1.28)   

 

For the output let’s choose the angular displacement 𝑦(𝑡) =  𝜃(𝑡) = 𝑥1 

𝑦(𝑡) =  (1 0) (
𝑥1
𝑥2
) + [0] ∙ 𝜏(𝑡). #(1.29)  

So, we have A, B, C and D. 

 

Example 1.5. Rotational Electromechanical System: a DC servomotor 

The input is armature voltage v(t) and the output is the motor shaft angular displacement. 

L, R, µ and J are constants with J being the motor shaft polar inertia. Also here we ignore back 

emf voltage. Angular velocity is 𝜔(𝑡) =  �̇�(𝑡). The rest goes like this: 

 
Figure 1.5 Rotational electromechanical system: a DC servomotor 

 

1) Electrical circuit model: the Kirchoff’s voltage law: 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅 ∙ 𝑖(𝑡) = 𝑣(𝑡)#(1.30)  

2) Electromechanical coupling: 

𝜏(𝑡) =  𝛼 ∙ 𝑖(𝑡)#(1.31)  

 

So, the torque is linearly dependent on current , where 𝛼 is the motor torque constant. 

3) Rotational mechanical model: 

𝐽�̈�(𝑡) +  𝜇 ∙ �̇�(𝑡) =  𝜏(𝑡). #(1.32)  

NB! Here it is convenient to use a block diagram and the Laplace transform.  

If we assume zero initial current  

𝑑𝑖

𝑑𝑡
 ↔ 𝑠 ∙ 𝐼(𝑠) 𝑎𝑛𝑑 𝐿 ∙ 𝑠 ∙ 𝐼(𝑠) + 𝑅𝐼(𝑠) = 𝑉(𝑠) 

𝜏(𝑠), 𝜃(𝑠), 𝑉(𝑠)and 𝐼(𝑠)  are the Laplace images of corresponding physical quantities.  



Let us set T1 as electrical part of the circuit transfer function, T2 as electromechanical coupling 

transfer function and T3 as rotational mechanical part transfer function   

Therefore 

𝑇1(𝑠) =  
𝑜𝑢𝑡𝑝𝑢𝑡

𝑖𝑛𝑝𝑢𝑡
=  

𝐼(𝑠)

𝑉(𝑠)
=

1

𝐿𝑠 + 𝑅
; 

From 𝜏(𝑡) =  𝛼 ∙ 𝑖(𝑡) ↔ 𝜏(𝑠) = 𝛼 ∙ 𝐼(𝑠) and  

𝑇2(𝑠) =
𝜏(𝑠)

𝐼(𝑠)
= 𝛼; 

From (1.32) we get 

𝐽𝑠2𝜃(𝑠) +  𝜇𝑠𝜃(𝑠) = 𝜏(𝑠) 

and  

𝑇3(𝑠) =  
𝜃(𝑠)

𝜏(𝑠)
=

1

𝐽𝑠2 + 𝜇𝑠
. 

 

A block diagram for the set of employed Laplace transforms: 

 
It shows that in conclusion 𝑇(𝑠) = 𝑇1(𝑠) ∙ 𝑇2(𝑠) ∙ 𝑇3(𝑠). 

 

𝑇(𝑠) =
𝜃(𝑠)

𝑉(𝑠)
=

𝛼

(𝐿𝑠 + 𝑅)(𝐽𝑠2 + 𝜇𝑠)
=

𝛼

𝐿𝐽𝑠3 + (𝐿𝜇 + 𝑅𝐽)𝑠2 + 𝑅𝜇𝑠
. 

 

Here we use the notation that 

𝐿𝐽𝑠3𝜃(𝑠) + (𝐿𝜇 + 𝑅𝐽)𝑠2𝜃(𝑠) + 𝑅𝜇𝑠𝜃(𝑠) =  𝛼𝑉(𝑠) 

is a Laplace image of the following ODE: 

𝐿𝐽𝜃(𝑡) + (𝐿𝜇 + 𝑅𝐽)�̈�(𝑡) + 𝑅𝜇�̇�(𝑡) =  𝛼𝑉(𝑡). #(1.33)  

Since it is an order of 3 ODE we need 3 state variables. 

Now we can choose 

𝑥1(𝑡) =  𝜃(𝑡),

𝑥2(𝑡) =  �̇�(𝑡) = 

𝑥3(𝑡) = �̈�(𝑡) = �̇�2

�̇�1 

 

and  

�̇�3 = 𝜃(𝑡) = −
𝑅𝜇

𝐿∙𝐽
𝑥2 − 

𝐿𝜇+𝑅𝐽

𝐿∙𝐽
𝑥3 +

𝛼

𝐿∙𝐽
𝑉(𝑡). 

Thus  



(

�̇�1
�̇�2
�̇�3

) =  (

0 1 0
0 0 1

−
𝑅𝜇

𝐿 ∙ 𝐽
− 
𝐿𝜇 + 𝑅𝐽

𝐿 ∙ 𝐽
− 
𝐿𝜇 + 𝑅𝐽

𝐿 ∙ 𝐽

)(

𝑥1
𝑥2
𝑥3
) + (

0
0
𝛼

𝐿 ∙ 𝐽

) ∙ 𝑉(𝑡), #(1.34)  

We care only about 𝜃(𝑡), so 

𝑦(𝑡) = 𝜃(𝑡) = 𝑥1(𝑡),

𝑦(𝑡) = (1 0 0) (

𝑥1
𝑥2
𝑥3
) + 0 ∙ 𝑉(𝑡),

 #(1.35)  

which completes the state space representation of the DC motor.  
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