Chapter 12 Metal Casting: Design, Materials, and Economics

General Design Rules for Casting

- Design the part so that the shape is cast easily.
- Select a casting process and material suitable for the part, size, mechanical properties, etc.
- Locate the parting line of the mold in the part.
- Locate and design the gates to allow uniform feeding of the mold cavity with molten metal.
- Select an appropriate runner geometry for the system.
- Locate mold features such as sprue, screens and risers, as appropriate.
- Make sure proper controls and good practices are in place.

Locating and Designing Gates

- Multiple gates often are preferable and are necessary for large parts.
- Gates should feed into thick sections of castings.
- A fillet should be used where a gate meets a casting; this feature produces less turbulence than abrupt junctions.
- The gate closest to the sprue should be placed sufficiently far away so that the gate can be easily removed.
- The minimum gate length should be three to five times the gate diameter, depending on the metal being cast.
- Curved gates should be avoided, but when necessary, a straight section in the gate should be located immediately adjacent to the casting.

Riser Design

- The riser must not solidify before the casting.
- The riser volume must be large enough to provide a sufficient amount of liquid metal to compensate for shrinkage in the cavity.
- Junctions between casting and feeder should not develop a hot spot where shrinkage porosity can occur.
- Risers must be placed so that the liquid metal can be delivered to locations where it is most needed.
- There must be sufficient pressure to drive the liquid metal into locations in the mold where it is most needed.
- The pressure head from the riser should suppress cavity formation and encourage complete cavity filling.

Design Rules for Casting

Figure 12.1 Suggested design modifications to avoid defects in castings

Elimination of Hot Spots

Figure 12.2 Examples of designs showing the importance of maintaining uniform cross-sections in castings to avoid hot spots and shrinkage cavities.

Shrinkage Allowance for Casting in Sand Molds

TABLE 12.1

Normal Shrinkage Allowance for Some Metals Cast in Sand Molds

Metal	%
Gray cast iron	0.83-1.3
White cast iron	2.1
Malleable cast iron	0.78-1.0
Aluminum alloys	1.3
Magnesium alloys	1.3
Yellow brass	1.3-1.6
Phosphor bronze	1.0-1.6
Aluminum bronze	2.1
High-manganese steel	2.6

Examples of Good and Poor Designs

Figure 12.3 Examples of undesirable (poor) and desirable (good) casting designs. *Source:* Courtesy of American Die Casting Institute.

Mechanical Properties for Cast Alloys

Figure 12.4 Mechanical properties for various groups of cast alloys. Note that even within the same group, the properties vary over a wide range, particularly for cast steels. *Source*: Courtesy of Steel Founders' Society of America.

Casting Applications and Characteristics

TABLE 12.2

Type of alloy	Typical applications	Castability*	Weldability*	Machinability
Aluminum	Pistons, clutch housings, intake manifolds	Е	F	G-E
Copper	Pumps, valves, gear blanks, marine propellers	F-G	F	F-G
Ductile iron	Crankshafts, heavy-duty gears	G	D	G
Gray iron	Engine blocks, gears, brake disks and drums, machine bases	E	D	G
Magnesium	Crankcase, transmision housings	G-E	G	E
Malleable iron	Farm and construction machinery, heavy-duty bearings, railroad rolling stock	G	D	G
Nickel	Gas turbine blades, pump and valve components for chemical plants	F	F	F
Steel (carbon) and low-alloy)	Die blocks, heavy-duty gear blanks, aircraft undercarriage members, railroad wheels	F	E	F
Steel (high-alloy)	Gas-turbine housings, pump and valve components, rock-crusher jaws	F	Е	F
White iron	Mill liners, shot-blasing nozzles, railroad brake shoes, crushers, and pulverizers	G	VP	VP
Zinc	Door handles, radiator grills	E	D	E

*E = excellent; G = good; F = fair; VP = very poor; D = difficult.

Properties and Applications of Cast Irons

TABLE 12.3

Cast iron	Туре	Ultimate tensile strength (MPa)	Yield strength (MPa)	Elongation in 50 mm (%)	Typical applications
Gray	Ferritic	170	140	0.4	Pipe, sanitary ware
	Pearilitic	275	240	0.4	Engine blocks, machine tools
	Martensitic	550	550	0	Wear surfaces
Ductile	Ferritic	415	275	18	Pipe, general service
(Nodular)	Pearlitic	550	380	6	Crankshafts, highly stressed parts
	Tempered martensite	825	620	2	High-strength machine parts, wear-resistant parts
Malleable	Ferritic	365	240	18	Hardware, pipe fittings, general engineering service
	Pearlitic	450	310	10	Railroad equipment, couplings
	Tempered martensite	700	550	2	Railroad equipment, gears, connecting rods
White	Pearlitic	275	275	0	Wear-resistant parts, mill rolls

Mechanical Properties of Gray Cast Irons

TABLE 12.4

Mechanical Properties of Gray Cast Irons

ASTM class	Ultimate tensile strength (MPa)	Compressive strength (MPa)	Elastic modulus (GPa)	Hardness (HB)
20	152	572	66–97	156
25	179	669	79-102	174
30	214	752	90-113	210
35	252	855	100-119	212
40	293	965	110-138	235
50	362	1130	130-157	262
60	431	1293	141-162	302

Properties and Applications of Nonferrous Cast Alloys

TABLE 12.5

Alloys (UNS)	Condition	Ultimate tensile strength (MPa)	Yield strength (MPa)	Elongation in 50 mm (%)	Typical applications
Aluminum alloys	The Contract				2. (7 × m m
195 (AO1950)	Heat treated	220-280	110-220	8.5-2	Sand castings
319 (AO3190)	Heat treated	185-250	125-180	2-1.5	Sand castings
356 (AO3560)	Heat treated	260	185	5	Permanent mold castings
Copper alloys					
Red brass (C83600)	Annealed	235	115	25	Pipe fittings, gears
Yellow brass (C86400)	Annealed	275	95	25	Hardware, ornamental
Manganese bronze (C86100)	Annealed	480	195	30	Propeller hubs, blades
Leaded tin bronze (C92500)	Annealed	260	105	35	Gears, bearings, valves
Gun metal (C90500)	Annealed	275	105	30	Pump parts, fittings
Nickel silver (C97600)	Annealed	275	175	15	Marine parts, valves
Magnesium alloys					
AZ91A	F	230	150	3	Die castings
AZ63A	T4	275	95	12	Sand and permanent mold castings
AZ91C	T6	275	130	5	High-strength parts
EZ33A	T5	160	110	3	Elevated-temperature parts
HK31A	T6	210	105	8	Elevated-temperature parts
QE22A	T6	275	205	4	Highest-strength parts

Cost Characteristics of Casting

TABLE 12.6

General Cost Characteristics of Casting Processes						
Casting process		Cost*	Production rate			
	Die	Equipment	Labor	(pieces/hr)		
Sand	L	L	L-M	<20		
Shell mold	L-M	M-H	L-M	<50		
Plaster	L-M	М	M-H	<10		
Investment	M-H	L-M	Н	<1000		
Permanent mold	М	М	L-M	<60		
Die	Н	Н	L-M	<200		
Centrifugal	М	Н	L-M	<50		

L = low; M = medium; H = high.

Automated Shell Production

Figure 12.5 A robot generates a ceramic shell on wax patterns (trees) for investment casting. The robot is programmed to dip the trees and then place them in an automated drying system. With many layers, a thick ceramic shell suitable for investment casting is formed. *Source*: Courtesy of Wisconsin Precision Casting Corporation